Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-5 of 5
Carole Peyrin
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (5): 799–813.
Published: 01 April 2021
FIGURES
Abstract
View article
PDF
Theories of visual recognition postulate that our ability to understand our visual environment at a glance is based on the extraction of the gist of the visual scene, a first global and rudimentary visual representation. Gist perception would be based on the rapid analysis of low spatial frequencies in the visual signal and would allow a coarse categorization of the scene. We aimed to study whether the low spatial resolution information available in peripheral vision could modulate the processing of visual information presented in central vision. We combined behavioral measures (Experiments 1 and 2) and fMRI measures (Experiment 2). Participants categorized a scene presented in central vision (artificial vs. natural categories) while ignoring another scene, either semantically congruent or incongruent, presented in peripheral vision. The two scenes could either share the same physical properties (similar amplitude spectrum and spatial configuration) or not. Categorization of the central scene was impaired by a semantically incongruent peripheral scene, in particular when the two scenes were physically similar. This semantic interference effect was associated with increased activation of the inferior frontal gyrus. When the two scenes were semantically congruent, the dissimilarity of their physical properties impaired the categorization of the central scene. This effect was associated with increased activation in occipito-temporal areas. In line with the hypothesis of predictive mechanisms involved in visual recognition, results suggest that semantic and physical properties of the information coming from peripheral vision would be automatically used to generate predictions that guide the processing of signal in central vision.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (12): 2394–2405.
Published: 01 December 2015
FIGURES
Abstract
View article
PDF
Current models of visual perception suggest that during scene categorization, low spatial frequencies (LSF) are processed rapidly and activate plausible interpretations of visual input. This coarse analysis would then be used to guide subsequent processing of high spatial frequencies (HSF). The present fMRI study examined how processing of LSF may influence that of HSF by investigating the neural bases of the semantic interference effect. We used hybrid scenes as stimuli by combining LSF and HSF from two different scenes, and participants had to categorize the HSF scene. Categorization was impaired when LSF and HSF scenes were semantically dissimilar, suggesting that the LSF scene was processed automatically and interfered with categorization of the HSF scene. fMRI results revealed that this semantic interference effect was associated with increased activation in the inferior frontal gyrus, the superior parietal lobules, and the fusiform and parahippocampal gyri. Furthermore, a connectivity analysis (psychophysiological interaction) revealed that the semantic interference effect resulted in increasing connectivity between the right fusiform and the right inferior frontal gyri. Results support influential models suggesting that, during scene categorization, LSF information is processed rapidly in the pFC and activates plausible interpretations of the scene category. These coarse predictions would then initiate top–down influences on recognition-related areas of the inferotemporal cortex, and these could interfere with the categorization of HSF information in case of semantic dissimilarity to LSF.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (10): 2287–2297.
Published: 01 October 2014
FIGURES
Abstract
View article
PDF
Neurophysiological, behavioral, and computational data indicate that visual analysis may start with the parallel extraction of different elementary attributes at different spatial frequencies and follows a predominantly coarse-to-fine (CtF) processing sequence (low spatial frequencies [LSF] are extracted first, followed by high spatial frequencies [HSF]). Evidence for CtF processing within scene-selective cortical regions is, however, still lacking. In the present fMRI study, we tested whether such processing occurs in three scene-selective cortical regions: the parahippocampal place area (PPA), the retrosplenial cortex, and the occipital place area. Fourteen participants were subjected to functional scans during which they performed a categorization task of indoor versus outdoor scenes using dynamic scene stimuli. Dynamic scenes were composed of six filtered images of the same scene, from LSF to HSF or from HSF to LSF, allowing us to mimic a CtF or the reverse fine-to-coarse (FtC) sequence. Results showed that only the PPA was more activated for CtF than FtC sequences. Equivalent activations were observed for both sequences in the retrosplenial cortex and occipital place area. This study suggests for the first time that CtF sequence processing constitutes the predominant strategy for scene categorization in the PPA.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (8): 1315–1331.
Published: 01 August 2013
FIGURES
| View All (4)
Abstract
View article
PDF
Using large natural scenes filtered in spatial frequencies, we aimed to demonstrate that spatial frequency processing could not only be retinotopically mapped but could also be lateralized in both hemispheres. For this purpose, participants performed a categorization task using large black and white photographs of natural scenes (indoors vs. outdoors, with a visual angle of 24° × 18°) filtered in low spatial frequencies (LSF), high spatial frequencies (HSF), and nonfiltered scenes, in block-designed fMRI recording sessions. At the group level, the comparison between the spatial frequency content of scenes revealed first that, compared with HSF, LSF scene categorization elicited activation in the anterior half of the calcarine fissures linked to the peripheral visual field, whereas, compared with LSF, HSF scene categorization elicited activation in the posterior part of the occipital lobes, which are linked to the fovea, according to the retinotopic property of visual areas. At the individual level, functional activations projected on retinotopic maps revealed that LSF processing was mapped in the anterior part of V1, whereas HSF processing was mapped in the posterior and ventral part of V2, V3, and V4. Moreover, at the group level, direct interhemispheric comparisons performed on the same fMRI data highlighted a right-sided occipito-temporal predominance for LSF processing and a left-sided temporal cortex predominance for HSF processing, in accordance with hemispheric specialization theories. By using suitable method of analysis on the same data, our results enabled us to demonstrate for the first time that spatial frequencies processing is mapped retinotopically and lateralized in human occipital cortex.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (12): 2768–2780.
Published: 01 December 2010
FIGURES
Abstract
View article
PDF
Spatial frequencies in an image influence visual analysis across a distributed, hierarchically organized brain network. Low spatial frequency (LSF) information may rapidly reach high-order areas to allow an initial coarse parsing of the visual scene, which could then be “retroinjected” through feedback into lower level visual areas to guide finer analysis on the basis of high spatial frequency (HSF). To test this “coarse-to-fine” processing scheme and to identify its neural substrates in the human brain, we presented sequences of two spatial-frequency-filtered scenes in rapid succession (LSF followed by HSF or vice versa) during fMRI and ERPs in the same participants. We show that for low-to-high sequences (but not for high-to-low sequences), LSF produces a first increase of activity in prefrontal and temporo-parietal areas, followed by enhanced responses to HSF in primary visual cortex. This pattern is consistent with retroactive influences on low-level areas that process HSF after initial activation of higher order areas by LSF.