Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Caroline Di Bernardi Luft
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2024) 36 (9): 1771–1783.
Published: 01 September 2024
FIGURES
| View All (5)
Abstract
View article
PDF
Associative learning affects many areas of human behavior. Recently, we showed that the neural response to monetary reward is enhanced by performing an action, suggesting interactions between neural systems controlling motor behavior and reward processing. Given that many psychiatric disorders are associated with social anhedonia, a key open question is whether such effects generalize to social rewards, and in how far they affect associative learning. We developed a novel task in which participants ( n = 66) received social reward feedback and social punishment either by pressing a button or waiting. Predictive cues were linked to feedback valence with 80% accuracy. Using EEG, we measured the neural response to both predictive cues and social feedback. We found enhanced reward positivity for social reward preceded by an action, and an enhanced N2 for cues predicting negative feedback. Cue-locked P3 amplitude was reduced for cues associated with negative feedback in passive trials only, showing a modulation of outcome anticipation by performing a motor action. This was supported by connectivity analyses showing stronger directed theta synchronization, in line with increased top–down modulation of attention, in active compared with passive trials. These findings suggest that actively obtaining social feedback enhances reward sensitivity and modulates outcome anticipation.
Journal Articles
Ioanna Zioga, Peter M. C. Harrison, Marcus T. Pearce, Joydeep Bhattacharya, Caroline Di Bernardi Luft
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (12): 2241–2259.
Published: 01 December 2020
FIGURES
| View All (4)
Abstract
View article
PDF
It is still a matter of debate whether visual aids improve learning of music. In a multisession study, we investigated the neural signatures of novel music sequence learning with or without aids (auditory-only: AO, audiovisual: AV). During three training sessions on three separate days, participants (nonmusicians) reproduced (note by note on a keyboard) melodic sequences generated by an artificial musical grammar. The AV group ( n = 20) had each note color-coded on screen, whereas the AO group ( n = 20) had no color indication. We evaluated learning of the statistical regularities of the novel music grammar before and after training by presenting melodies ending on correct or incorrect notes and by asking participants to judge the correctness and surprisal of the final note, while EEG was recorded. We found that participants successfully learned the new grammar. Although the AV group, as compared to the AO group, reproduced longer sequences during training, there was no significant difference in learning between groups. At the neural level, after training, the AO group showed a larger N100 response to low-probability compared with high-probability notes, suggesting an increased neural sensitivity to statistical properties of the grammar; this effect was not observed in the AV group. Our findings indicate that visual aids might improve sequence reproduction while not necessarily promoting better learning, indicating a potential dissociation between sequence reproduction and learning. We suggest that the difficulty induced by auditory-only input during music training might enhance cognitive engagement, thereby improving neural sensitivity to the underlying statistical properties of the learned material.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (3): 418–432.
Published: 01 March 2016
FIGURES
| View All (6)
Abstract
View article
PDF
Predicting future events based on previous knowledge about the environment is critical for successful everyday interactions. Here, we ask which brain regions support our ability to predict the future based on implicit knowledge about the past in young and older age. Combining behavioral and fMRI measurements, we test whether training on structured temporal sequences improves the ability to predict upcoming sensory events; we then compare brain regions involved in learning predictive structures between young and older adults. Our behavioral results demonstrate that exposure to temporal sequences without feedback facilitates the ability of young and older adults to predict the orientation of an upcoming stimulus. Our fMRI results provide evidence for the involvement of corticostriatal regions in learning predictive structures in both young and older learners. In particular, we showed learning-dependent fMRI responses for structured sequences in frontoparietal regions and the striatum (putamen) for young adults. However, for older adults, learning-dependent activations were observed mainly in subcortical (putamen, thalamus) regions but were weaker in frontoparietal regions. Significant correlations of learning-dependent behavioral and fMRI changes in these regions suggest a strong link between brain activations and behavioral improvement rather than general overactivation. Thus, our findings suggest that predicting future events based on knowledge of temporal statistics engages brain regions involved in implicit learning in both young and older adults.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (5): 1180–1193.
Published: 01 May 2014
FIGURES
| View All (4)
Abstract
View article
PDF
Feedback processing is important for learning and therefore may affect the consolidation of skills. Considerable research demonstrates electrophysiological differences between correct and incorrect feedback, but how we learn from small versus large errors is usually overlooked. This study investigated electrophysiological differences when processing small or large error feedback during a time estimation task. Data from high-learners and low-learners were analyzed separately. In both high- and low-learners, large error feedback was associated with higher feedback-related negativity (FRN) and small error feedback was associated with a larger P300 and increased amplitude over the motor related areas of the left hemisphere. In addition, small error feedback induced larger desynchronization in the alpha and beta bands with distinctly different topographies between the two learning groups: The high-learners showed a more localized decrease in beta power over the left frontocentral areas, and the low-learners showed a widespread reduction in the alpha power following small error feedback. Furthermore, only the high-learners showed an increase in phase synchronization between the midfrontal and left central areas. Importantly, this synchronization was correlated to how well the participants consolidated the estimation of the time interval. Thus, although large errors were associated with higher FRN, small errors were associated with larger oscillatory responses, which was more evident in the high-learners. Altogether, our results suggest an important role of the motor areas in the processing of error feedback for skill consolidation.