Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Charles A. Czeisler
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (12): 2072–2085.
Published: 01 December 2013
FIGURES
| View All (4)
Abstract
View article
PDF
Light regulates multiple non-image-forming (or nonvisual) circadian, neuroendocrine, and neurobehavioral functions, via outputs from intrinsically photosensitive retinal ganglion cells (ipRGCs). Exposure to light directly enhances alertness and performance, so light is an important regulator of wakefulness and cognition. The roles of rods, cones, and ipRGCs in the impact of light on cognitive brain functions remain unclear, however. A small percentage of blind individuals retain non-image-forming photoreception and offer a unique opportunity to investigate light impacts in the absence of conscious vision, presumably through ipRGCs. Here, we show that three such patients were able to choose nonrandomly about the presence of light despite their complete lack of sight. Furthermore, 2 sec of blue light modified EEG activity when administered simultaneously to auditory stimulations. fMRI further showed that, during an auditory working memory task, less than a minute of blue light triggered the recruitment of supplemental prefrontal and thalamic brain regions involved in alertness and cognition regulation as well as key areas of the default mode network. These results, which have to be considered as a proof of concept, show that non-image-forming photoreception triggers some awareness for light and can have a more rapid impact on human cognition than previously understood, if brain processing is actively engaged. Furthermore, light stimulates higher cognitive brain activity, independently of vision, and engages supplemental brain areas to perform an ongoing cognitive process. To our knowledge, our results constitute the first indication that ipRGC signaling may rapidly affect fundamental cerebral organization, so that it could potentially participate to the regulation of numerous aspects of human brain function.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (4): 508–521.
Published: 01 April 2006
Abstract
View article
PDF
Sleep—wake homeostatic and internal circadian timedependent brain processes interact to regulate human brain function so that alert wakefulness is promoted during the daytime and consolidated sleep is promoted at nighttime. The consequence of chronically altering the normal relationship between these processes for human brain function is largely unknown. We tested cognitive and vigilance performance while subjects lived in the laboratory for over a month. The subjects lived on either 24.0- or 24.6-hr day lengths. Half of the subjects tested maintained a normal relationship between sleep—wakefulness and internal circadian time (synchronized group), whereas the other half did not (nonsynchronized group). Levels of the sleep-promoting hormone melatonin were high during scheduled sleep in the synchronized group, whereas melatonin levels were high during scheduled wakefulness in the nonsynchronized group. Failure to adapt to the scheduled day length was dependent upon individual differences in intrinsic circadian period. Total sleep time was reduced, sleep latency and Rapid Eye Movement (REM) latency were shortened, and wakefulness after sleep onset was increased in the nonsynchronized group. Cognitive performance improved (i.e., learning) in the synchronized group, whereas learning was significantly impaired in the nonsynchronized group. Attention progressively declined in both groups, suggesting that 8 hr of scheduled sleep per night is insufficient to maintain brain vigilance even when sleep occurs at an appropriate biological time. Our results establish that proper alignment between sleep—wakefulness and internal circadian time is crucial for enhancement of cognitive performance. In addition, our results demonstrate that exposure to dim light (~25 lx) is sufficient to expand the range of entrainment in humans.