Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Chie Nakatani
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (5): 1168–1179.
Published: 01 May 2014
FIGURES
| View All (5)
Abstract
View article
PDF
Global workspace access is considered as a critical factor for the ability to report a visual target. A plausible candidate mechanism for global workspace access is coupling of slow and fast brain activity. We studied coupling in EEG data using cross-frequency phase–amplitude modulation measurement between delta/theta phases and beta/gamma amplitudes from two experimental sessions, held on different days, of a typical attentional blink (AB) task, implying conscious access to targets. As the AB effect improved with practice between sessions, theta–gamma and theta–beta coupling increased generically. Most importantly, practice effects observed in delta–gamma and delta–beta couplings were specific to performance on the AB task. In particular, delta–gamma coupling showed the largest increase in cases of correct target detection in the most challenging AB conditions. All these practice effects were observed in the right temporal region. Given that the delta band is the main frequency of the P3 ERP, which is a marker of global workspace activity for conscious access, and because the gamma band is involved in visual object processing, the current results substantiate the role of phase–amplitude modulation in conscious access to visual target representations.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (12): 1969–1979.
Published: 01 December 2005
Abstract
View article
PDF
The attentional blink (AB) phenomenon occurs when perceivers must report two targets embedded in a sequence of distracters; if the first target precedes the second by 200-600 msec, the second one is often missed. We investigated AB by measuring dynamic cross-lag phase synchronization for 565 electrode pairs in 40-Hz-range EEG. Phase synchrony, on average, was higher in experimental conditions, where two targets are reported, than in control conditions, where only the second target is reported. The effect occurred in electrode pairs covering the whole head. Timing of the synchrony was crucial: Brief episodes of enhanced synchrony occurred 100-500 msec before expected target onset in AB conditions where the second target was correctly reported. These results show that intrinsic brain dynamics produce anticipatory synchronization in transient assemblies of cortical areas. Enhanced levels of anticipatory synchronization occur in response to the demands of the task in conditions where the system's limited capacity is under strain.