Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Chien-Te Wu
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (1): 141–149.
Published: 01 January 2015
FIGURES
Abstract
View article
PDF
Earlier studies suggested that the visual system processes information at the basic level (e.g., dog) faster than at the subordinate (e.g., Dalmatian) or superordinate (e.g., animals) levels. However, the advantage of the basic category over the superordinate category in object recognition has been challenged recently, and the hierarchical nature of visual categorization is now a matter of debate. To address this issue, we used a forced-choice saccadic task in which a target and a distractor image were displayed simultaneously on each trial and participants had to saccade as fast as possible toward the image containing animal targets based on different categorization levels. This protocol enables us to investigate the first 100–120 msec, a previously unexplored temporal window, of visual object categorization. The first result is a surprising stability of the saccade latency (median RT ∼155 msec) regardless of the animal target category and the dissimilarity of target and distractor image sets. Accuracy was high (around 80% correct) for categorization tasks that can be solved at the superordinate level but dropped to almost chance levels for basic level categorization. At the basic level, the highest accuracy (62%) was obtained when distractors were restricted to another dissimilar basic category. Computational simulations based on the saliency map model showed that the results could not be predicted by pure bottom–up saliency differences between images. Our results support a model of visual recognition in which the visual system can rapidly access relatively coarse visual representations that provide information at the superordinate level of an object, but where additional visual analysis is required to allow more detailed categorization at the basic level.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (12): 4094–4105.
Published: 01 December 2011
FIGURES
| View All (4)
Abstract
View article
PDF
Several major cognitive neuroscience models have posited that focal spatial attention is required to integrate different features of an object to form a coherent perception of it within a complex visual scene. Although many behavioral studies have supported this view, some have suggested that complex perceptual discrimination can be performed even with substantially reduced focal spatial attention, calling into question the complexity of object representation that can be achieved without focused spatial attention. In the present study, we took a cognitive neuroscience approach to this problem by recording cognition-related brain activity both to help resolve the questions about the role of focal spatial attention in object categorization processes and to investigate the underlying neural mechanisms, focusing particularly on the temporal cascade of these attentional and perceptual processes in visual cortex. More specifically, we recorded electrical brain activity in humans engaged in a specially designed cued visual search paradigm to probe the object-related visual processing before and during the transition from distributed to focal spatial attention. The onset times of the color popout cueing information, indicating where within an object array the subject was to shift attention, was parametrically varied relative to the presentation of the array (i.e., either occurring simultaneously or being delayed by 50 or 100 msec). The electrophysiological results demonstrate that some levels of object-specific representation can be formed in parallel for multiple items across the visual field under spatially distributed attention, before focal spatial attention is allocated to any of them. The object discrimination process appears to be subsequently amplified as soon as focal spatial attention is directed to a specific location and object. This set of novel neurophysiological findings thus provides important new insights on fundamental issues that have been long-debated in cognitive neuroscience concerning both object-related processing and the role of attention.