Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-8 of 8
Christian Beste
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Turning the Light Switch on Binding: Prefrontal Activity for Binding and Retrieval in Action Control
Christoph Felix Geissler, Lars-Michael Schöpper, Anna Franziska Engesser, Christian Beste, Alexander Münchau ...
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2024) 36 (1): 95–106.
Published: 01 January 2024
FIGURES
Abstract
View article
PDF
According to action control theories, responding to a stimulus leads to the binding of response and stimulus features into a common representation, that is, an event file. Repeating any component of an event file retrieves all previously bound information, leading to performance costs for partial repetitions measured in so-called binding effects. Although otherwise robust and stable, binding effects are typically completely absent in “localization tasks,” in which participants localize targets with spatially compatible responses. Yet, it is possible to observe binding effects in such when location features have to be translated into response features. We hypothesized that this modulation of binding effects is reflected in task involvement of the dorsolateral pFC (DLPFC). Participants localized targets with either direct (i.e., spatially compatible key) or translated (i.e., diagonally opposite to the spatially compatible key) responses. We measured DLPFC activity with functional near-infrared spectroscopy. On the behavioral level, we observed binding effects in the translated response condition, but not in the direct response condition. Importantly, prefrontal activity was also higher in the translated mapping condition. In addition, we found some evidence for the strength of the difference in binding effects in behavioral data being correlated with the corresponding effects in prefrontal activity. This suggests that activity in the DLPFC reflects the amount of executive control needed for translating location features into responses. More generally, binding effects seem to emerge only when the task at hand involves DLPFC recruitment.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2023) 35 (4): 749–764.
Published: 01 April 2023
FIGURES
| View All (5)
Abstract
View article
PDF
Cognitive flexibility is an essential facet of everyday life, for example, when switching between different tasks. Neurophysiological accounts on cognitive flexibility have often focused on the task switch itself, disregarding preceding processes and the possible impact of “brain states” before engaging in cognitive flexibility. In a combined working memory/task-switching paradigm, we examined how neuronal processes during cognitive flexibility are interrelated to preceding neuronal processes across time and brain regions in a sample of n = 42 healthy adults. The interrelation of alpha- and theta-band-related processes over brain states ahead and during response selection was investigated on a functional neuroanatomical level using EEG-beamforming. The results showed that response selection processes (reflected by theta-band activity) seem to be strongly connected to “idling” and preparatory brain activity states (in both the theta- and alpha-band). Notably, the superior parietal cortex seems to play a crucial role by assembling alpha-band-related inhibitory processes from the rule- and goal-based actions during “idling” brain states, namely, short-term maintenance of rules (temporal cortex), task-set reconfiguration (superior frontal/precentral regions), and perceptual control (occipital cortex). This information is further relayed to response selection processes associated with theta-band activity. Notably, when the task has to be switched, theta-band activity in the superior frontal gyrus indicates a need for cognitive control in the “idling” brain state, which also seems to be relayed by BA7. The results indicate the importance of brain activity states ahead of response selection processes for cognitive flexibility.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2022) 34 (7): 1246–1258.
Published: 02 June 2022
FIGURES
| View All (4)
Abstract
View article
PDF
Efficient response selection is essential to flexible, goal-directed behavior. Prominent theoretical frameworks such as the Theory of Event Coding and Binding and Retrieval in Action Control have provided insights regarding the dynamics of perception–action integration processes. According to Theory of Event Coding and Binding and Retrieval in Action Control, encoded representations of stimulus–response bindings influence later retrieval processes of these bindings. However, this concept still lacks conclusive empirical evidence. In the current study, we applied representational decoding to EEG data. On the behavioral level, the findings replicated binding effects that have been established in previous studies: The task performance was impaired when an event file had to be reconfigured. The EEG-decoding results showed that retrieval processes of stimulus–response bindings could be decoded using the representational content developed after the initial establishment of these stimulus–response bindings. We showed that stimulus-related properties became immediately reactivated when re-encountering the respective stimulus–response association. These reactivations were temporally stable. In contrast, representations of stimulus–response mappings revealed a transient pattern of activity and could not successfully be decoded directly after stimulus–response binding. Information detailing the bindings between stimuli and responses were also retrieved, but only after having been loaded into a memory system. The current study supports the notion that stimulus–response integration and memory processes are intertwined at multiple levels.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2022) 34 (6): 1053–1069.
Published: 02 May 2022
FIGURES
| View All (7)
Abstract
View article
PDF
The ability to inhibit responses is central for situational behavior. However, the mechanisms how sensory information is used to inform inhibitory control processes are incompletely understood. In the current study, we examined neurophysiological processes of perception–action integration in response inhibition using the theory of event coding as a conceptual framework. Based on theoretical considerations, we focused on theta and alpha band activity in close connection to the functional neuroanatomical level using EEG beamforming. Moreover, we performed a network-based analysis of theta and alpha band activity. We show a seesaw-like relationship between medial and superior frontal cortex theta band activity and frontoparietal cortex alpha band activity during perception–action integration in response inhibition, depending on the necessity to reconfigure perception–action associations. When perception–action integration was more demanding, because perception–action associations (bindings) have to be reconfigured, there was an increase of theta and a decrease of alpha band activity. Vice versa, when there was no need to reconfigure perception–action bindings, theta band activity was low and alpha band activity was high. However, theta band processes seem to be most important for perception–action integration in response inhibition, because only the sensor-level network organization of theta band activity showed variations depending on the necessity to reconfigure perception–action associations. When no reconfiguration was necessary, the network architecture was more small-world-like, likely enabling efficient processing. When reconfigurations were necessary, the network organization becomes more random. These differences were particularly strong for fractions of the neurophysiological signal supposed to reflect response selection processes.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2022) 34 (4): 605–617.
Published: 05 March 2022
FIGURES
| View All (5)
Abstract
View article
PDF
The ability to inhibit a prepotent response is a crucial prerequisite of goal-directed behavior. So far, research on response inhibition has mainly examined these processes when there is little to no cognitive control during the decision to respond. We manipulated the “context” in which response inhibition has to be exerted (i.e., a controlled or an automated context) by combining a Simon task with a go/no-go task and focused on theta band activity. To investigate the role of “context” in response inhibition, we also examined how far theta band activity in the pretrial period modulates context-dependent variations of theta band activity during response inhibition. This was done in an EEG study applying beamforming methods. Here, we examined n = 43 individuals. We show that an automated context, as opposed to a controlled context, compromises response inhibition performance and increases the need for cognitive control. This was also related to context-dependent modulations of theta band activity in superior frontal and middle frontal regions. Of note, results showed that theta band activity in the pretrial period, associated with the right inferior frontal cortex, was substantially correlated with context-dependent modulations of theta band activity during response inhibition. The direction of the obtained correlation provides insights into the functional relevance of a pretrial theta band activity. The data suggest that pretrial theta band activity reflects some form of attentional sampling to inform possible upcoming processes signaling the need for cognitive control.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (8): 1484–1496.
Published: 01 August 2020
FIGURES
| View All (5)
Abstract
View article
PDF
Cognitive flexibility is an important aspect relevant to daily life situations, and there is an increasing public interest to optimize these functions, for example, using (brief) meditation practices. However, the underlying neurophysiological mechanisms remain poorly understood. On the basis of theoretical considerations, both improvements and deteriorations of cognitive flexibility are possible through focused attention meditation (FAM). We investigated the effect of a brief smartphone app–based FAM on task switching using EEG methods, temporal signal decomposition, and source localization techniques (standardized low-resolution electromagnetic brain tomography). The study was conducted using a crossover study design. We show that even 15 min of FAM practicing modulates memory-based task switching, on a behavioral level and a neurophysiological level. More specifically, FAM hampers response selection and conflict resolution processes and seem to reduce cognitive resources, which are necessary to rapidly adapt to changing conditions. These effects are represented in the N2 and P3 time windows and associated with ACC. It seems that FAM increases the attention to one specific aspect, which may help to focus but carries also the risk that behavior becomes too rigid. FAM thus seems to modulate both the stimulus- and response-related aspects of conflict monitoring in ACC. Motor-related processes were not affected. The results can be explained using a cognitive control dilemma framework, suggesting that particularly alterations in background monitoring may be important to consider when explaining the effects of FAM during task switching.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (7): 1381–1393.
Published: 01 July 2020
FIGURES
| View All (6)
Abstract
View article
PDF
Conflict monitoring processes are central to cope with fluctuating environmental demands. However, the efficacy of these processes depends on previous trial history/experience, which is reflected in the “congruency sequence effect” (CSE). Several theoretical accounts have been put forward to explain this effect. Some accounts stress the role of perceptual processes in the emergence of the CSE. As yet, it is elusive how these perceptual processes are implemented on a neural level. We examined this question using a newly developed moving dots flanker task. We combine decomposition methods of EEG data and source localization. We show that perceptual processes modulate the CSE and can be isolated in neurophysiological signals, especially in the N2 ERP time window. However, mechanisms relating perception to action are also coded and modulated in this time window. We show that middle frontal regions (BA 6) are associated with processes dealing with purely perceptual processes. Inferior frontal regions (BA 45) are associated with processes dealing with stimulus–response transition processes. Likely, the neurophysiological modulations reflect unbinding processes at the perceptual level, and stimulus–response translation level needed to respond correctly on the presented (changed) stimulus–response relationships. The data establish a direct relationship between psychological concepts focusing on perceptual processes during conflict monitoring and neurophysiological processes using signal decomposition.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2019) 31 (9): 1430–1442.
Published: 01 September 2019
FIGURES
| View All (4)
Abstract
View article
PDF
The ability to inhibit prepotent responses is a central facet of cognitive control. However, the role of perceptual factors in response inhibition processes is still poorly understood and an underrepresented field of research. In the current study, we focus on the role of conflicts between perceptual stimulus features (so-called S-S conflicts) for response inhibition. We introduce a novel semantic Stroop Condition task and analyze EEG data using source localization and temporal EEG signal decomposition methods to delineate the neural mechanisms how semantic S-S conflicts modulate response inhibition. We show that semantic conflicts enhance response inhibition performance by modulating neural processes relating to conflict resolution mechanisms in the middle and inferior frontal cortex, as well as the ACC. Opposed to that, Stroop-like (S-S) conflicts compromise response execution by affecting decision processes in inferior parietal cortices. The data suggest that when action control processes and their neurophysiological correlates depend on regions specialized in the processing of semantic conflicts, there is an improvement in response inhibition. The results show that Stroop-like semantic conflicts have opposite effects depending on whether a response has to be executed or inhibited. These opposing effects are then also associated with different functional–neuroanatomical structures. The results of the study show mechanisms by which stimulus-related processes influence mechanisms of response control.