Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Christian Frings
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (8): 1581–1594.
Published: 01 July 2021
FIGURES
| View All (4)
Abstract
View article
PDF
Human action control relies on event files, that is, short-term stimulus–response bindings that result from the integration of perception and action. The present EEG study examined oscillatory brain activities related to the integration and disintegration of event files in the distractor–response binding (DRB) task, which relies on a sequential prime–probe structure with orthogonal variation of distractor and response relations between prime and probe. Behavioral results indicated a DRB effect in RTs, which was moderated by the duration of the response-stimulus interval (RSI) between prime response and probe stimulus onset. Indeed, a DRB effect was observed for a short RSI of 500 msec but not for a longer RSI of 2000 msec, indicating disintegration of event files over time. EEG results revealed a positive correlation between individual DRB in the RSI-2000 condition and postmovement beta synchronization after both prime and probe responses. Beamformer analysis localized this correlation effect to the middle occipital gyrus, which also showed highest coherency with precentral and inferior parietal brain regions. Together, these findings suggest that postmovement beta synchronization is a marker of event file disintegration, with the left middle occipital gyrus being a hub region for stimulus–response bindings in the visual DRB task.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (7): 985–998.
Published: 01 July 2018
FIGURES
| View All (6)
Abstract
View article
PDF
Understanding the neural processes that maintain goal-directed behavior is a major challenge for the study of attentional control. Although much of the previous work on the issue has focused on prefrontal brain areas, little is known about the contribution of sensory brain processes to the regulation of attentional control. The present EEG study examined brain oscillatory activities invoked in the processing of response conflict in a lateralized Eriksen single-flanker task, in which target letters were presented at fixation and single distractor letters were presented either left or right to the targets. Distractors were response compatible, response incompatible, or neutral in relation to the responses associated with the targets. The behavioral results showed that responses to targets in incompatible trials were slower and more error prone than responses in compatible trials. The electrophysiological results revealed an early sensory lateralization effect in (both evoked and induced) theta power (3–6 Hz) that was more pronounced in incompatible than compatible trials. The sensory lateralization effect preceded in time a midfrontal conflict effect that was indexed by an increase of (induced) theta power (6–9 Hz) in incompatible compared with compatible trials. The findings indicate an early modulation of sensory distractor processing induced by response conflict. Theoretical implications of the findings, in particular with respect to the theory of event coding and theories relating to stimulus–response binding [Henson, R. N., Eckstein, D., Waszak, F., Frings, C., & Horner, A. Stimulus-response bindings in priming. Trends in Cognitive Sciences, 18, 376–384, 2014; Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–878, 2001], are discussed.