Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Christian Kaufmann
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (4): 728–738.
Published: 01 April 2010
FIGURES
Abstract
View article
PDF
The antisaccade task has proven highly useful in basic and clinical neuroscience, and the neural structures involved are well documented. However, the cognitive and neural mechanisms that mediate task performance are not yet understood. An event-related fMRI study was designed to dissociate the neural correlates of two putative key functions, volitional saccade generation and inhibition of reflexive saccades, and to investigate their interaction. Nineteen healthy volunteers performed a task that required (a) to initiate saccades volitionally, either with or without a simultaneous demand to inhibit a reflexive saccade; and (b) to inhibit a reflexive saccade, either with or without a simultaneous demand to initiate a saccade volitionally. Analysis of blood oxygen level-dependent signal changes confirmed a major role of the frontal eye fields and the supplementary eye fields in volitional saccade generation. Inhibition-related activation of a specific fronto-parietal network was highly consistent with previous evidence involved in inhibitory processes. Unexpectedly, there was little evidence of specific brain activation during combined generation and inhibition demands, suggesting that the neural processing of generation and inhibition in antisaccades is independent to a large extent.