Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Cindy Lustig
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (7): 1212–1225.
Published: 01 July 2017
FIGURES
| View All (7)
Abstract
View articletitled, Distinct Frontoparietal Networks Underlying Attentional Effort and Cognitive Control
View
PDF
for article titled, Distinct Frontoparietal Networks Underlying Attentional Effort and Cognitive Control
We investigated the brain activity patterns associated with stabilizing performance during challenges to attention. Our findings revealed distinct patterns of frontoparietal activity and functional connectivity associated with increased attentional effort versus preserved performance during challenged attention. Participants performed a visual signal detection task with and without presentation of a perceptual-attention challenge (changing background). The challenge condition increased activation in frontoparietal regions including right mid-dorsal/dorsolateral PFC (RPFC), approximating Brodmann's area 9, and superior parietal cortex. We found that greater behavioral impact of the challenge condition was correlated with greater RPFC activation, suggesting that increased engagement of cognitive control regions is not always sufficient to maintain high levels of performance. Functional connectivity between RPFC and ACC increased during the challenge condition and was also associated with performance declines, suggesting that the level of synchronized engagement of these regions reflects individual differences in attentional effort. Pretask, resting-state RPFC–ACC connectivity did not predict subsequent performance, suggesting that RPFC–ACC connectivity increased dynamically during task performance in response to performance decrement and error feedback. In contrast, functional connectivity between RPFC and superior parietal cortex not only during the task but also during pretask rest was associated with preserved performance in the challenge condition. Together, these data suggest that resting frontoparietal connectivity predicts performance on attention tasks that rely on those same cognitive control networks and that, under challenging conditions, other control regions dynamically couple with this network to initiate the engagement of cognitive control.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (9): 1981–1991.
Published: 01 September 2014
FIGURES
Abstract
View articletitled, Disposed to Distraction: Genetic Variation in the Cholinergic System Influences Distractibility But Not Time-on-Task Effects
View
PDF
for article titled, Disposed to Distraction: Genetic Variation in the Cholinergic System Influences Distractibility But Not Time-on-Task Effects
Both the passage of time and external distraction make it difficult to keep attention on the task at hand. We tested the hypothesis that time-on-task and external distraction pose independent challenges to attention and that the brain's cholinergic system selectively modulates our ability to resist distraction. Participants with a polymorphism limiting cholinergic capacity (Ile89Val variant [rs1013940] of the choline transporter gene SLC5A7 ) and matched controls completed self-report measures of attention and a laboratory task that measured decrements in sustained attention with and without distraction. We found evidence that distraction and time-on-task effects are independent and that the cholinergic system is strongly linked to greater vulnerability to distraction. Ile89Val participants reported more distraction during everyday life than controls, and their task performance was more severely impacted by the presence of an ecologically valid video distractor (similar to a television playing in the background). These results are the first to demonstrate a specific impairment in cognitive control associated with the Ile89Val polymorphism and add to behavioral and cognitive neuroscience studies indicating the cholinergic system's critical role in overcoming distraction.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (6): 1021–1032.
Published: 01 June 2007
Abstract
View articletitled, Age Differences in Deactivation: A Link to Cognitive Control?
View
PDF
for article titled, Age Differences in Deactivation: A Link to Cognitive Control?
The network of regions shown by functional imaging studies to be deactivated by experimental tasks relative to nominally more passive baselines (task < baseline) may reflect processes engaged during the resting state or “default mode.” Deactivation may result when attention and resources are diverted from default-mode processes toward task processes. Aging is associated with altered patterns of deactivation which may be related to declining resources, difficulties with resource allocation, or both. These possibilities predict that greater task demand, which increases deactivation levels in younger adults, should exacerbate age-related declines in allocating resources away from the default mode. The present study investigated the magnitude and temporal properties of deactivations in young and older adults during tasks that varied in their demand for cognitive control. Two versions of a verb generation task that varied in their demand for selection among competing alternatives were compared to word reading and a fixation baseline condition. Consistent with our hypothesis, greater deactivations were found with increasing demand. Young and older adults showed equivalent deactivations in the minimal selection condition. By contrast, age differences in both the magnitude and time course of deactivation increased with selection demand: Compared to young adults', older adults' deactivation response showed less sensitivity to demand. Demand-related changes in deactivation magnitude correlated with performance changes, suggesting that individual and group differences in deactivation have functional significance.