Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Claudine Habak
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (11): 3433–3447.
Published: 01 November 2011
FIGURES
| View All (5)
Abstract
View article
PDF
We investigated the neural correlates of facial processing changes in healthy aging using fMRI and an adaptation paradigm. In the scanner, participants were successively presented with faces that varied in identity, viewpoint, both, or neither and performed a head size detection task independent of identity or viewpoint. In right fusiform face area (FFA), older adults failed to show adaptation to the same face repeatedly presented in the same view, which elicited the most adaptation in young adults. We also performed a multivariate analysis to examine correlations between whole-brain activation patterns and behavioral performance in a face-matching task tested outside the scanner. Despite poor neural adaptation in right FFA, high-performing older adults engaged the same face-processing network as high-performing young adults across conditions, except the one presenting a same facial identity across different viewpoints. Low-performing older adults used this network to a lesser extent. Additionally, high-performing older adults uniquely recruited a set of areas related to better performance across all conditions, indicating age-specific involvement of this added network. This network did not include the core ventral face-processing areas but involved the left inferior occipital gyrus, frontal, and parietal regions. Although our adaptation results show that the neuronal representations of the core face-preferring areas become less selective with age, our multivariate analysis indicates that older adults utilize a distinct network of regions associated with better face matching performance, suggesting that engaging this network may compensate for deficiencies in ventral face processing regions.