Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Clay B. Holroyd
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience 1–28.
Published: 22 December 2024
Abstract
View article
PDF
In natural and artificial neural networks, modularity and distributed structure afford complementary but competing benefits. The former allows for hierarchical representations that can flexibly recombine modules to address novel problems, whereas the latter can benefit from less constrained training, potentially uncovering fruitful statistical regularities. Here, we investigate these competing demands in the context of human sequential behavior. First, we explore this setting by comparing the properties of several recurrent neural network models. We find that explicit hierarchical structure by itself fails to provide a critical performance advantage when compared with a “flat” model that does not incorporate hierarchical structure. However, hierarchy appears to facilitate cognitive control processes that support nonroutine behaviors and behaviors that are carried out under computational stress. Second, we compare these models against fMRI data using representational similarity analysis. We find that a model that incorporates so-called wiring costs in the cost function, which produces a hierarchically organized gradient of representational structure across the hidden layer of the neural network, best accounts for fMRI data collected from human participants in a previous study [Holroyd, C. B., Ribas-Fernandes, J. J. F., Shahnazian, D., Silvetti, M., & Verguts, T., Human midcingulate cortex encodes distributed representations of task progress. Proceedings of the National Academy of Sciences, U.S.A. , 115 , 6398–6403, 2018]. The results reveal that the ACC encodes distributed representations of sequential task context along a rostro-caudal gradient of abstraction: Rostral ACC encodes relatively abstract and temporally extended patterns of activity compared with those encoded by caudal ACC. These results provide insight into the role of ACC in motivation and cognitive control.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2019) 31 (1): 8–23.
Published: 01 January 2019
FIGURES
| View All (6)
Abstract
View article
PDF
A longstanding view of the organization of human and animal behavior holds that behavior is hierarchically organized—in other words, directed toward achieving superordinate goals through the achievement of subordinate goals or subgoals. However, most research in neuroscience has focused on tasks without hierarchical structure. In past work, we have shown that negative reward prediction error (RPE) signals in medial prefrontal cortex (mPFC) can be linked not only to superordinate goals but also to subgoals. This suggests that mPFC tracks impediments in the progression toward subgoals. Using fMRI of human participants engaged in a hierarchical navigation task, here we found that mPFC also processes positive prediction errors at the level of subgoals, indicating that this brain region is sensitive to advances in subgoal completion. However, when subgoal RPEs were elicited alongside with goal-related RPEs, mPFC responses reflected only the goal-related RPEs. These findings suggest that information from different levels of hierarchy is processed selectively, depending on the task context.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (3): 460–471.
Published: 01 March 2016
FIGURES
| View All (4)
Abstract
View article
PDF
The development and expression of the midbrain dopamine system is determined in part by genetic factors that vary across individuals such that dopamine-related genes are partly responsible for addiction vulnerability. However, a complete account of how dopamine-related genes predispose individuals to drug addiction remains to be developed. Adopting an intermediate phenotype approach, we investigated whether reward-related electrophysiological activity of ACC—a cortical region said to utilize dopamine reward signals to learn the value of extended, context-specific sequences of goal-directed behaviors—mediates the influence of multiple dopamine-related functional polymorphisms over substance use. We used structural equation modeling to examine whether two related electrophysiological phenomena associated with the control and reinforcement learning functions of ACC—theta power and the reward positivity—mediated the relationship between the degree of substance misuse and genetic polymorphisms that regulate dopamine processing in frontal cortex. Substance use data were collected from 812 undergraduate students. One hundred ninety-six returned on a subsequent day to participate in an electrophysiological experiment and to provide saliva samples for DNA analysis. We found that these electrophysiological signals mediated a relationship between the DRD4-521T dopamine receptor genotype and substance misuse. Our results provide a theoretical framework that bridges the gap between genes and behavior in drug addiction and illustrate how future interventions might be individually tailored for specific genetic and neurocognitive profiles.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (9): 1833–1840.
Published: 01 September 2009
Abstract
View article
PDF
To elucidate the neural mechanisms underlying the development of perceptual expertise, we recorded ERPs while participants performed a categorization task. We found that as participants learned to discriminate computer generated “blob” stimuli, feedback modulated the amplitude of the error-related negativity (ERN)—an ERP component thought to reflect error evaluation within medial–frontal cortex. As participants improved at the categorization task, we also observed an increase in amplitude of an ERP component associated with object recognition (the N250). The increase in N250 amplitude preceded an increase in amplitude of an ERN component associated with internal error evaluation (the response ERN). Importantly, these electroencephalographic changes were not observed for participants who failed to improve on the categorization task. Our results suggest that the acquisition of perceptual expertise relies on interactions between the posterior perceptual system and the reinforcement learning system involving medial–frontal cortex.