Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Clemens Maidhof
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (9): 2252–2267.
Published: 01 September 2011
FIGURES
| View All (5)
Abstract
View articletitled, Effects of Selective Attention on Syntax Processing in Music and Language
View
PDF
for article titled, Effects of Selective Attention on Syntax Processing in Music and Language
The present study investigated the effects of auditory selective attention on the processing of syntactic information in music and speech using event-related potentials. Spoken sentences or musical chord sequences were either presented in isolation, or simultaneously. When presented simultaneously, participants had to focus their attention either on speech, or on music. Final words of sentences and final harmonies of chord sequences were syntactically either correct or incorrect. Irregular chords elicited an early right anterior negativity (ERAN), whose amplitude was decreased when music was simultaneously presented with speech, compared to when only music was presented. However, the amplitude of the ERAN-like waveform elicited when music was ignored did not differ from the conditions in which participants attended the chord sequences. Irregular sentences elicited an early left anterior negativity (ELAN), regardless of whether speech was presented in isolation, was attended, or was to be ignored. These findings suggest that the neural mechanisms underlying the processing of syntactic structure of music and speech operate partially automatically, and, in the case of music, are influenced by different attentional conditions. Moreover, the ERAN was slightly reduced when irregular sentences were presented, but only when music was ignored. Therefore, these findings provide no clear support for an interaction of neural resources for syntactic processing already at these early stages.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (10): 2401–2413.
Published: 01 October 2010
FIGURES
| View All (8)
Abstract
View articletitled, Processing Expectancy Violations during Music Performance and Perception: An ERP Study
View
PDF
for article titled, Processing Expectancy Violations during Music Performance and Perception: An ERP Study
Musicians are highly trained motor experts with pronounced associations between musical actions and the corresponding auditory effects. However, the importance of auditory feedback for music performance is controversial, and it is unknown how feedback during music performance is processed. The present study investigated the neural mechanisms underlying the processing of auditory feedback manipulations in pianists. To disentangle effects of action-based and perception-based expectations, we compared feedback manipulations during performance to the mere perception of the same stimulus material. In two experiments, pianists performed bimanually sequences on a piano, while at random positions, the auditory feedback of single notes was manipulated, thereby creating a mismatch between an expected and actually perceived action effect (action condition). In addition, pianists listened to tone sequences containing the same manipulations (perception condition). The manipulations in the perception condition were either task-relevant (Experiment 1) or task-irrelevant (Experiment 2). In action and perception conditions, event-related potentials elicited by manipulated tones showed an early fronto-central negativity around 200 msec, presumably reflecting a feedback ERN/N200, followed by a positive deflection (P3a). The early negativity was more pronounced during the action compared to the perception condition. This shows that during performance, the intention to produce specific auditory effects leads to stronger expectancies than the expectancies built up during music perception.