Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Cong Huang
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (6): 1021–1029.
Published: 01 June 2008
Abstract
View article
PDF
The ability to detect errors and adjust behavior accordingly is essential for maneuvering in an uncertain environment. Errors are particularly prone to occur when multiple, conflicting responses are registered in a situation that requires flexible behavioral outputs; for instance, when a go signal requires a response and a stop signal requires inhibition of the response during a stop signal task (SST). Previous studies employing the SST have provided ample evidence indicating the importance of the medial cortical brain regions in conflict/error processing. Other studies have also related these regional activations to postconflict/error behavioral adjustment. However, very few studies have directly explored the neural correlates of postconflict/error behavioral adjustment. Here we employed an SST to elicit errors in approximately half of the stop trials despite constant behavioral adjustment of the observers. Using functional magnetic resonance imaging, we showed that prefrontal loci including the ventrolateral prefrontal cortex are involved in post-error slowing in reaction time. These results delineate the neural circuitry specifically involved in error-associated behavioral modifications.