Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Daniel Brandeis
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (12): 4008–4021.
Published: 01 December 2011
FIGURES
| View All (5)
Abstract
View article
PDF
There is an increasing line of evidence supporting the idea that the formation of lasting memories involves neural activity preceding stimulus presentation. Following this line, we presented words in an incidental learning setting and manipulated the prestimulus state by asking the participants to perform either an emotional (neutral or emotional) or a semantic (animate or inanimate) decision task. Later, we tested the retrieval of each previously presented word with a recognition memory test. For both conditions, the subsequent memory effect (SME) was defined as ERP difference between subsequently remembered and forgotten words. Comparing the prestimulus SME between and within the two conditions yielded topographic differences in the time interval from −1300 to −700 msec before stimulus onset. This indicates that the activity of brain areas involved in incidental encoding of semantic information varied in the spatial distribution of ERPs, depending on the emotional and semantic requirements of the task. These findings provide evidence that there is a difference in semantic and emotional preparatory processes, which modulates successful encoding into episodic memory. This difference suggests that there are multiple task-specific functional neural systems that support memory formation. These systems differ in location and/or relative contribution of some of the brain structures that generate the measured scalp electric fields. Consequently, the cognitive processes that enable memory formation depend on the differential semantic nature of the study task and reflect differences in the preparatory processing of the multiple semantic components of a word's meaning.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (10): 1532–1552.
Published: 01 October 2005
Abstract
View article
PDF
In adult readers, printed words and other letter strings activate specialized visual functions within 200 msec, as evident from neurophysiological recordings of brain activity. These fast, specialized responses to letter strings are thought to develop through plastic changes in the visual system. However, it is unknown whether this specialization emerges only with the onset of word reading, or represents a precursor of literacy. We compared 6-year-old kindergarten children who could not yet read words to adult readers. Both age groups detected immediate repetitions of visually presented words, pseudo-words, symbol strings, and pictures during event-related potential (ERP) mapping. Maps from seven corresponding ERP segments in children and adults were analyzed regarding fast (<250 msec) and slow (>300 msec) specialization for letter strings. Adults reliably differentiated words through increased fast (<150 msec) occipito-temporal N1 activity from symbols. Children showed a later, more mid-occipital N1 with marginal word-symbol differences, which were absent in those children with low letter knowledge. Children with high letter knowledge showed some fast sensitivity to letter strings, which was confined to right occipito-temporal sites, unlike the stronger adult N1 specialization. This suggests that a critical degree of early literacy induces some immature, but fast, specialization for letter strings before word reading becomes possible. Children also differentiated words from symbols in later segments through increased right occipito-temporal negativity for words. This slow specialization for letter strings was not modulated by letter knowledge and was absent in adults, possibly reflecting a visual precursor of literacy due to visual familiarity with letter strings.