Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Daniel J. Plebanek
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
The Effects of Frequency, Variability, and Co-occurrence on Category Formation in Neural Systems
FreePublisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (8): 1397–1412.
Published: 01 July 2021
FIGURES
| View All (14)
Abstract
View articletitled, The Effects of Frequency, Variability, and Co-occurrence on Category Formation in Neural Systems
View
PDF
for article titled, The Effects of Frequency, Variability, and Co-occurrence on Category Formation in Neural Systems
Objects are grouped into categories through a complex combination of statistical and structural regularities. We sought to better understand the neural responses to the structural features of object categories that result from implicit learning. Adult participants were exposed to 32 object categories that contained three structural properties: frequency, variability, and co-occurrences, during an implicit learning task. After this exposure, participants completed a recognition task and were then presented with blocks of learned object categories during fMRI sessions. Analyses were performed by extracting data from ROIs placed throughout the fusiform gyri and lateral occipital cortex and comparing the effects of the different structural properties throughout the ROIs. Behaviorally, we found that symbol category recognition was supported by frequency, but not variability. Neurally, we found that sensitivity to object categories was greater in the right hemisphere and increased as ROIs were moved posteriorly. Frequency and variability altered the brain activation while processing object categories, although the presence of learned co-occurrences did not. Moreover, variability and co-occurrence interacted as a function of ROI, with the posterior fusiform gyrus being most sensitive to this relationship. This result suggests that variability may guide the learner to relevant co-occurrences and this is supported by the posterior ventral temporal cortex. Broadly, our results suggest that the internal features of the categories themselves are key factors in the category learning system.