Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Daniel T. Willingham
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (1): 11–25.
Published: 01 January 2011
FIGURES
| View All (6)
Abstract
View article
PDF
It is well documented that both cognitive and motor learning abilities decline with normative aging. Given that cognitive processes such as working memory are engaged during the early stages of motor learning [Anguera, J., Reuter-Lorenz, P., Willingham, D., & Seidler, R. Contributions of spatial working memory to visuomotor learning. Journal of Cognitive Neuroscience, 22(9), 1917–1930, 2010], age-related declines in motor learning may be due in part to reductions in cognitive ability. The present study examined whether age-related declines in spatial working memory (SWM) contribute to deficits in visuomotor adaptation. Young and older adult participants performed a visuomotor adaptation task that involved adapting manual aiming movements to a 30° rotation of the visual feedback display as well as an SWM task in an fMRI scanner. Young adults showed a steeper learning curve than older adults during the early adaptation period. The rate of early adaptation was correlated with SWM performance for the young, but not older, adults. Both groups showed similar brain activation patterns for the SWM task, including engagement of the right dorsolateral prefrontal cortex and bilateral inferior parietal lobules. However, when the SWM activation was used as a limiting mask, younger adults showed neural activation that overlapped with the early adaptation period, whereas older adults did not. A partial correlation controlling for age revealed that the rate of early adaptation correlated with the amount of activation at the right dorsolateral prefrontal cortex. These findings suggest that a failure to effectively engage SWM processes during learning contributes to age-related deficits in visuomotor adaptation.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (9): 1917–1930.
Published: 01 September 2010
FIGURES
| View All (4)
Abstract
View article
PDF
Previous studies of motor learning have described the importance of cognitive processes during the early stages of learning; however, the precise nature of these processes and their neural correlates remains unclear. The present study investigated whether spatial working memory (SWM) contributes to visuomotor adaptation depending on the stage of learning. We tested the hypothesis that SWM would contribute early in the adaptation process by measuring (i) the correlation between SWM tasks and the rate of adaptation, and (ii) the overlap between the neural substrates of a SWM mental rotation task and visuomotor adaptation. Participants completed a battery of neuropsychological tests, a visuomotor adaptation task, and an SWM task involving mental rotation, with the latter two tasks performed in a 3.0-T MRI scanner. Performance on a neuropsychological test of SWM (two-dimensional mental rotation) correlated with the rate of early, but not late, visuomotor adaptation. During the early, but not late, adaptation period, participants showed overlapping brain activation with the SWM mental rotation task, in right dorsolateral prefrontal cortex and the bilateral inferior parietal lobules. These findings suggest that the early, but not late, phase of visuomotor adaptation engages SWM processes.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (8): 1302–1315.
Published: 01 August 2007
Abstract
View article
PDF
The neural substrate of cognitive control is thought to comprise an evaluative component located in the anterior cingulate cortex (ACC) and an executive component in the prefrontal cortex (PFC). The control mechanism itself is mainly local, triggered by response conflict (monitored by the ACC) and involving the allocation of executive resources (recruited by the PFC) in a trial-to-trial fashion. However, another way to achieve control would be to use a strategic mechanism based on long-term prediction of upcoming events and on a chronic response strategy that ignores local features of the task. In the current study, we showed that such a strategic control mechanism was based on a functional dissociation or complementary relationship between the ACC and the PFC. When information in the environment was available to make predictions about upcoming stimuli, local task features (e.g., response conflict) were no longer used as a control signal. We suggest that having separate control mechanisms based on local or global task features allows humans to be persistent in pursuing their goals, yet flexible enough to adapt to changes in the environment.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2004) 16 (1): 127–138.
Published: 01 January 2004
Abstract
View article
PDF
Representation of sequential structure can occur with respect to the order of perceptual events or the order in which actions are linked. Neural correlates of sequence retrieval associated with the order of motor responses were identified in a variant of the serial reaction time task in which training occurred with a spatially incompatible mapping between stimuli and finger responses. After transfer to a spatially compatible version of the task, performance enhancements indicative of learning were only present in subjects required to make finger movements in the same order used during training. In contrast, a second group of subjects performed the compatible task using an identical sequence of stimuli (and different order of finger movements) as in training. They demonstrated no performance benefit, indicating that learning was response based. Analysis was restricted to subjects demonstrating low recall of the sequence structure to rule out effects of explicit awareness. The interaction of group (motor vs. perceptual transfer) with sequence retrieval (sequencing vs. rest) revealed significantly greater activation in the bilateral supplementary motor area, cingulate motor area, ventral premotor cortex, left caudate, and inferior parietal lobule for subjects in the motor group (illustrating successful sequence retrieval at the response level). Retrieval of sequential responses occurs within mesial motor areas and related motor planning areas.