Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
Daphne Bavelier
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Prior Reward Conditioning Dampens Hippocampal and Striatal Responses during an Associative Memory Task
UnavailablePublisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (3): 402–421.
Published: 01 March 2021
FIGURES
| View All (9)
Abstract
View articletitled, Prior Reward Conditioning Dampens Hippocampal and Striatal Responses during an Associative Memory Task
View
PDF
for article titled, Prior Reward Conditioning Dampens Hippocampal and Striatal Responses during an Associative Memory Task
Offering reward during encoding typically leads to better memory [Adcock, R. A., Thangavel, A., Whitfield-Gabrieli, S.,Knutson, B., & Gabrieli, J. D. E. Reward-motivated learning: Mesolimbic activation precedes memory formation. Neuron , 50 , 507–517, 2006]. Whether such memory benefit persists when tested in a different task context remains, however, largely understudied [Wimmer, G. E., & Buechel, C. Reactivation of reward-related patterns from single past episodes supports memory-based decision making. Journal of Neuroscience , 36 , 2868–2880, 2016]. Here, we ask whether reward at encoding leads to a generalized advantage across learning episodes, a question of high importance for any everyday life applications, from education to patient rehabilitation. Although we confirmed that offering monetary reward increased responses in the ventral striatum and pleasantness judgments for pictures used as stimuli, this immediate beneficial effect of reward did not carry over to a subsequent and different picture–location association memory task during which no reward was delivered. If anything, a trend for impaired memory accuracy was observed for the initially high-rewarded pictures as compared to low-rewarded ones. In line with this trend in behavioral performance, fMRI activity in reward (i.e., ventral striatum) and in memory (i.e., hippocampus) circuits was reduced during the encoding of new associations using previously highly rewarded pictures (compared to low-reward pictures). These neural effects extended to new pictures from same, previously highly rewarded semantic category. Twenty-four hours later, delayed recall of associations involving originally highly rewarded items was accompanied by decreased functional connectivity between the hippocampus and two brain regions implicated in value-based learning, the ventral striatum and the ventromedial PFC. We conclude that acquired reward value elicits a downward value-adjustment signal in the human reward circuit when reactivated in a novel nonrewarded context, with a parallel disengagement of memory–reward (hippocampal–striatal) networks, likely to undermine new associative learning. Although reward is known to promote learning, here we show how it may subsequently hinder hippocampal and striatal responses during new associative memory formation.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2019) 31 (3): 377–389.
Published: 01 March 2019
FIGURES
| View All (4)
Abstract
View articletitled, Neural Correlates of Enhanced Visual Attentional Control in Action Video Game Players: An Event-Related Potential Study
View
PDF
for article titled, Neural Correlates of Enhanced Visual Attentional Control in Action Video Game Players: An Event-Related Potential Study
Action video game players (AVGPs) outperform non–action video game players (NAVGPs) on a range of perceptual and attentional tasks. Although several studies have reported neuroplastic changes within the frontoparietal networks of attention in AVGPs, little is known about possible changes in attentional modulation in low-level visual areas. To assess the contribution of these different levels of neural processing to the perceptual and attentional enhancements noted in AVGPs, visual event-related potentials (ERPs) were recorded from 14 AVGPs and 14 NAVGPs during a target discrimination task that required participants to attend to rapid sequences of Gabor patches under either focused or divided attention conditions. AVGPs responded faster to target Gabors in the focused attention condition compared with the NAVGPs. Correspondingly, ERPs to standard Gabors revealed a more pronounced negativity in the time range of the parietally generated anterior N1 component in AVGPs compared with NAVGPs during focused attention. In addition, the P2 component of the visual ERP was more pronounced in AVGPs than in NAVGPs over the hemisphere contralateral to the stimulus position in response to standard Gabors. Contrary to predictions, however, attention-modulated occipital components generated in the low-level extrastriate visual pathways, including the P1 and posterior N1, showed no significant group differences. Thus, the main neural signature of enhanced perceptual and attentional control functions in AVGPs appears linked to an attention-dependent parietal process, indexed by the anterior N1 component, and possibly to more efficient higher-order perceptual processing, indexed by the P2 component.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2002) 14 (5): 687–701.
Published: 01 July 2002
Abstract
View articletitled, Changes in the Spatial Distribution of Visual Attention after Early Deafness
View
PDF
for article titled, Changes in the Spatial Distribution of Visual Attention after Early Deafness
There is much anecdotal suggestion of improved visual skills in congenitally deaf individuals. However, this claim has only been met by mixed results from careful investigations of visual skills in deaf individuals. Psychophysical assessments of visual functions have failed, for the most part, to validate the view of enhanced visual skills after deafness. Only a few studies have shown an advantage for deaf individuals in visual tasks. Interestingly, all of these studies share the requirement that participants process visual information in their peripheral visual field under demanding conditions of attention. This work has led us to propose that congenital auditory deprivation alters the gradient of visual attention from central to peripheral field by enhancing peripheral processing. This hypothesis was tested by adapting a search task from Lavie and colleagues in which the interference from distracting information on the search task provides a measure of attentional resources. These authors have established that during an easy central search for a target, any surplus attention remaining will involuntarily process a peripheral distractor that the subject has been instructed to ignore. Attentional resources can be measured by adjusting the difficulty of the search task to the point at which no surplus resources are available for the distractor. Through modification of this paradigm, central and peripheral attentional resources were compared in deaf and hearing individuals. Deaf individuals possessed greater attentional resources in the periphery but less in the center when compared to hearing individuals. Furthermore, based on results from native hearing signers, it was shown that sign language alone could not be responsible for these changes. We conclude that auditory deprivation from birth leads to compensatory changes within the visual system that enhance attentional processing of the peripheral visual field.