Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
David Brang
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2019) 31 (7): 1002–1017.
Published: 01 July 2019
FIGURES
| View All (7)
Abstract
View articletitled, Joint Encoding of Auditory Timing and Location in Visual Cortex
View
PDF
for article titled, Joint Encoding of Auditory Timing and Location in Visual Cortex
Co-occurring sounds can facilitate perception of spatially and temporally correspondent visual events. Separate lines of research have identified two putatively distinct neural mechanisms underlying two types of crossmodal facilitations: Whereas crossmodal phase resetting is thought to underlie enhancements based on temporal correspondences, lateralized occipital evoked potentials (ERPs) are thought to reflect enhancements based on spatial correspondences. Here, we sought to clarify the relationship between these two effects to assess whether they reflect two distinct mechanisms or, rather, two facets of the same underlying process. To identify the neural generators of each effect, we examined crossmodal responses to lateralized sounds in visually responsive cortex of 22 patients using electrocorticographic recordings. Auditory-driven phase reset and ERP responses in visual cortex displayed similar topography, revealing significant activity in pericalcarine, inferior occipital–temporal, and posterior parietal cortex, with maximal activity in lateral occipitotemporal cortex (potentially V5/hMT+). Laterality effects showed similar but less widespread topography. To test whether lateralized and nonlateralized components of crossmodal ERPs emerged from common or distinct neural generators, we compared responses throughout visual cortex. Visual electrodes responded to both contralateral and ipsilateral sounds with a contralateral bias, suggesting that previously observed laterality effects do not emerge from a distinct neural generator but rather reflect laterality-biased responses in the same neural populations that produce phase-resetting responses. These results suggest that crossmodal phase reset and ERP responses previously found to reflect spatial and temporal facilitation in visual cortex may reflect the same underlying mechanism. We propose a new unified model to account for these and previous results.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (7): 1681–1696.
Published: 01 July 2011
FIGURES
| View All (8)
Abstract
View articletitled, Contextual Priming in Grapheme–Color Synesthetes and Yoked Controls: 400 msec in the Life of a Synesthete
View
PDF
for article titled, Contextual Priming in Grapheme–Color Synesthetes and Yoked Controls: 400 msec in the Life of a Synesthete
Grapheme–color synesthesia is a heritable trait where graphemes (“2”) elicit the concurrent perception of specific colors (red). Researchers have questioned whether synesthetic experiences are meaningful or simply arbitrary associations and whether these associations are perceptual or conceptual. To address these fundamental questions, ERPs were recorded as 12 synesthetes read statements such as “The Coca-Cola logo is white and 2,” in which the final grapheme induced a color that was either contextually congruous (red) or incongruous (“…white and 7,” for a synesthetes who experienced 7 as green). Grapheme congruity was found to modulate the amplitude of the N1, P2, N300, and N400 components in synesthetes, suggesting that synesthesia impacts perceptual as well as conceptual aspects of processing. To evaluate whether observed ERP effects required the experience of colored graphemes versus knowledge of grapheme–color pairings, we ran three separate groups of controls on a similar task. Controls trained to a synesthete's associations elicited N400 modulation, indicating that knowledge of grapheme–color mappings was sufficient to modulate this component. Controls trained to synesthetic associations and given explicit visualization instructions elicited both N300 and N400 modulations. Lastly, untrained controls who viewed physically colored graphemes (“2” printed in red) elicited N1 and N400 modulations. The N1 grapheme congruity effect began earlier in synesthetes than colored grapheme controls but had similar scalp topography. Data suggest that, in synesthetes, achromatic graphemes engage similar visual processing networks as colored graphemes in nonsynesthetes and are in keeping with models of synesthesia that posit early feed-forward connections between form and color processing areas in extrastriate cortex. The P2 modulation was unique to the synesthetes and may reflect neural activity that underlies the conscious experience of the synesthetic induction.