Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Deanna M. Barch
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (5): 1052–1064.
Published: 01 May 2011
FIGURES
| View All (4)
Abstract
View article
PDF
Observers spontaneously segment larger activities into smaller events. For example, “washing a car” might be segmented into “scrubbing,” “rinsing,” and “drying” the car. This process, called event segmentation, separates “what is happening now” from “what just happened.” In this study, we show that event segmentation predicts activity in the hippocampus when people access recent information. Participants watched narrative film and occasionally attempted to retrieve from memory objects that recently appeared in the film. The delay between object presentation and test was always 5 sec. Critically, for some of the objects, the event changed during the delay whereas for others the event continued. Using fMRI, we examined whether retrieval-related brain activity differed when the event changed during the delay. Brain regions involved in remembering past experiences over long periods, including the hippocampus, were more active during retrieval when the event changed during the delay. Thus, the way an object encountered just 5 sec ago is retrieved from memory appears to depend in part on what happened in those 5 sec. These data strongly suggest that the segmentation of ongoing activity into events is a control process that regulates when memory for events is updated.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2000) 12 (2): 298–309.
Published: 01 March 2000
Abstract
View article
PDF
Studies of a range of higher cognitive functions consistently activate a region of anterior cingulate cortex (ACC), typically posterior to the genu and superior to the corpus collosum. In particular, this ACC region appears to be active in task situations where there is a need to override a prepotent response tendency, when responding is underdetermined, and when errors are made. We have hypothesized that the function of this ACC region is to monitor for the presence of “crosstalk” or competition between incompatible responses. In prior work, we provided initial support for this hypothesis, demonstrating ACC activity in the same region both during error trials and during correct trials in task conditions designed to elicit greater response competition. In the present study, we extend our testing of this hypothesis to task situations involving underdetermined responding. Specifically, 14 healthy control subjects performed a verb-generation task during event-related functional magnetic resonance imaging (fMRI), with the on-line acquisition of overt verbal responses. The results demonstrated that the ACC, and only the ACC, was more active in a series of task conditions that elicited competition among alternative responses. These conditions included a greater ACC response to: (1) Nouns categorized as low vs. high constraint (i.e., during a norming study, multiple verbs were produced with equal frequency vs. a single verb that produced much more frequently than any other); (2) the production of verbs that were weak associates, rather than, strong associates of particular nouns; and (3) the production of verbs that were weak associates for nouns categorized as high constraint. We discuss the implication of these results for understanding the role that the ACC plays in human cognition.