Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Denis Mareschal
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2022) 34 (7): 1205–1229.
Published: 02 June 2022
FIGURES
| View All (8)
Abstract
View article
PDF
Reasoning about counterintuitive concepts in science and math is thought to require suppressing naive theories, prior knowledge, or misleading perceptual cues through inhibitory control. Neuroimaging research has shown recruitment of pFC regions during counterintuitive reasoning, which has been interpreted as evidence of inhibitory control processes. However, the results are inconsistent across studies and have not been directly compared with behavior or brain activity during inhibitory control tasks. In this fMRI study, 34 adolescents (aged 11–15 years) answered science and math problems and completed response inhibition tasks (simple and complex go/no-go) and an interference control task (numerical Stroop). Increased BOLD signal was observed in parietal (Brodmann's area 40) and prefrontal (Brodmann's area 8, 45/47) cortex regions in counterintuitive problems compared with control problems, where no counterintuitive reasoning was required, and in two parietal clusters when comparing correct counterintuitive reasoning to giving the incorrect intuitive response. There was partial overlap between increases in BOLD signal in the complex response inhibition and interference control tasks and the science and math contrasts. However, multivariate analyses suggested overlapping neural substrates in the parietal cortex only, in regions typically associated with working memory and visuospatial attentional demands rather than specific to inhibitory control. These results highlight the importance of using localizer tasks and a range of analytic approach to investigate to what extent common neural networks underlie performance of different cognitive tasks and suggests visuospatial attentional skills may support counterintuitive reasoning in science and math.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (12): 2276–2286.
Published: 01 December 2009
Abstract
View article
PDF
We measured looking times and ERPs to examine the cognitive and brain bases of perceptual category learning in 6-month-old infants. In Experiment 1, we showed that categorization and exemplar discrimination rely on different cortical processes. Specifically, the repetition of individual exemplars resulted in differential cortical processing at posterior channels at an early stage during object processing (100–300 msec), whereas discriminating among members of different categories was reflected in ERP differences over anterior cortical regions occurring later in time (300–500 msec) than the repetition effects. In Experiment 2, replicating the findings of Study 1, we found that infants engage the same cortical processes to categorize visual objects into basic-level categories, regardless of whether a basic (bird vs. fish) or global level is crossed (birds vs. cars). This pattern of findings is consistent with perceptual accounts of infant categorization [Quinn, P. C., & Eimas, P. D. Perceptual organization and categorization in young infants. In C. Rovee-Collier & L. P. Lipsitt (Eds.), Advances in infancy research ( pp. 1–36). Norwood, NJ: Ablex, 1996] and accords with recent adult neural-level models of perceptual categorization.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (6): 966–973.
Published: 01 June 2006
Abstract
View article
PDF
Common-onset visual masking (COVM) occurs when a mask and a target have common onset but delayed offset, with the mask persisting beyond the duration of the target [Di Lollo, V., Enns, J. T., & Rensink, R. A. Competition for consciousness among visual events: The psychophysics of reentrant visual events. Journal of Experimental Psychology: General, 129, 481–507, 2000]. We report the first behavioral and electrophysiological evidence of COVM in infants. An initial behavioral study included a familiarization phase during which a visual pattern (the target) surrounded by four black dots (the mask) was flashed 15 times to the infant. In the “unmasked” condition, the mask disappeared with the target. In the “masked” condition, the mask remained on the screen after deletion of the target for a further 93 msec. During the test phase, the familiar target pattern was paired with a new pattern. Infants in the unmasked condition showed a significant familiarity preference, suggesting that they had encoded the target during familiarization, whereas those in the masked condition showed no preference, suggesting that they had not encoded the target during familiarization. In the second experiment, high-density event-related potentials were used to investigate the electrophysiological pattern of activity that accompanies COVM. Six-month-old infants viewed both masked and unmasked conditions. Electrophysiological data indicated that over posterior channels the masked condition elicited a larger amplitude positive wave around 300 msec after stimulus onset than trials in the unmasked condition.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2004) 16 (8): 1352–1362.
Published: 01 October 2004
Abstract
View article
PDF
Habituation and related procedures are the primary behavioral tools used to assess perceptual and cognitive competence in early infancy. This article introduces a neurally constrained computational model of infant habituation. The model combines the two leading process theories of infant habituation into a single functional system that is grounded in functional brain circuitry. The HAB model (for Habituation, Autoassociation, and Brain) proposes that habituation behaviors emerge from the opponent, complementary processes of hippocampal selective inhibition and cortical long-term potentiation. Simulations of a seminal experiment by Fantz [Visual experience in infants: Decreased attention familiar patterns relative to novel ones. Science, 146, 668–670, 1964] are reported. The ability of the model to capture the fine detail of infant data (especially age-related changes in performance) underlines the useful contribution of neurocomputational models to our understanding of behavior in general, and of early cognition in particular.