Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Dirk J. Ruiter
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (10): 2250–2261.
Published: 01 October 2014
FIGURES
| View All (4)
Abstract
View article
PDF
The acquisition and retention of conceptual knowledge is more effective in well-structured curricula that provide an optimal conceptual framework for learning new material. However, the neural mechanisms by which preexisting conceptual schemas facilitate learning are not yet well understood despite their fundamental importance. A preexisting schema has been shown to enhance memory by influencing the balance between activity within the medial-temporal lobe and the medial pFC during mnemonic processes such as encoding, consolidation, and retrieval. Specifically, correctly encoding and retrieving information that is related to preexisting schemas appears rather related to medial prefrontal processing, whereas information unrelated or inconsistent with preexisting schemas rather relates to enhanced medial temporal processing and enhanced interaction between these structures. To further investigate interactions between these regions during conceptual encoding in a real-world university setting, we probed human brain activity and connectivity using fMRI during educationally relevant conceptual encoding carefully embedded within two course programs. Early second-year undergraduate biology and education students were scanned while encoding new facts that were either related or unrelated to the preexisting conceptual knowledge they had acquired during their first year of study. Subsequently, they were tested on their knowledge of these facts 24 hr later. Memory scores were better for course-related information, and this enhancement was associated with larger medial-prefrontal, but smaller medial-temporal subsequent memory effects. These activity differences went along with decreased functional interactions between these regions. Furthermore, schema-related medial-prefrontal subsequent memory effects measured during this experiment were found to be predictive of second-year course performance. These results, obtained in a real-world university setting, reveal brain mechanisms underlying acquisition of new knowledge that can be integrated into preexisting conceptual schemas and may indicate how relevant this process is for study success.