Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Dominique Morlet
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (2): 296–311.
Published: 01 February 2008
Abstract
View article
PDF
How does the sleeping brain process external stimuli, and in particular, up to which extent does the sleeping brain detect and process modifications in its sensory environment? In order to address this issue, we investigated brain reactivity to simple auditory stimulations during sleep in young healthy subjects. Electroencephalogram signal was acquired continuously during a whole night of sleep while a classical oddball paradigm with duration deviance was applied. In all sleep stages, except Sleep Stage 4, a mismatch negativity (MMN) was unquestionably found in response to deviant tones, revealing for the first time preserved sensory memory processing during almost the whole night. Surprisingly, during Sleep Stage 2 and paradoxical sleep, both P3a-like and P3b-like components were identified after the MMN, whereas a P3a alone followed the MMN in wakefulness and in Sleep Stage 1. This totally new result suggests elaborated processing of external stimulation during sleep. We propose that the P3b-like response could be associated to an active processing of the deviant tone in the dream's consciousness.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (12): 1959–1972.
Published: 01 November 2006
Abstract
View article
PDF
Timbre is a multidimensional perceptual attribute of complex tones that characterizes the identity of a sound source. Our study explores the representation in auditory sensory memory of three timbre dimensions (acoustically related to attack time, spectral centroid, and spectrum fine structure), using the mismatch negativity (MMN) component of the auditory event-related potential. MMN is elicited by a discriminable change in a sound sequence and reflects the detection of the discrepancy between the current stimulus and traces in auditory sensory memory. The stimuli used in the present study were carefully controlled synthetic tones. MMNs were recorded after changes along each of the three timbre dimensions and their combinations. Additivity of unidimensional MMNs and dipole modeling results suggest partially separate MMN generators for different timbre dimensions, reflecting their mainly separate processing in auditory sensory memory. The results expand to timbre dimensions a property of separation of the representation in sensory memory that has already been reported between basic perceptual attributes (pitch, loudness, duration, and location) of sound sources.