Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-5 of 5
Duncan E. Astle
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (4): 594–602.
Published: 01 April 2018
FIGURES
| View All (4)
Abstract
View article
PDF
Temporal orienting of attention operates by biasing the allocation of cognitive and motor resources in specific moments in time, resulting in the improved processing of information from expected compared with unexpected targets. Recent findings have shown that temporal orienting operates relatively early across development, suggesting that this attentional mechanism plays a core role for human cognition. However, the exact neurophysiological mechanisms allowing children to attune their attention over time are not well understood. In this study, we presented 8- to 12-year-old children with a temporal cueing task designed to test (1) whether anticipatory oscillatory dynamics predict children's behavioral performance on a trial-by-trial basis and (2) whether anticipatory oscillatory neural activity may be supported by cross-frequency phase–amplitude coupling as previously shown in adults. Crucially, we found that, similar to what has been reported in adults, children's ongoing beta rhythm was strongly coupled with their theta rhythm and that the strength of this coupling distinguished validly cued temporal intervals, relative to neutral cued trials. In addition, in long trials, there was an inverse correlation between oscillatory beta power and children's trial-by-trial reaction, consistent with oscillatory beta power reflecting better response preparation. These findings provide the first experimental evidence that temporal attention in children operates by exploiting oscillatory mechanism.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (7): 996–1009.
Published: 01 July 2016
FIGURES
| View All (5)
Abstract
View article
PDF
A critical requirement of an efficient cognitive system is the selection and prioritization of relevant information. This occurs when selecting specific items from our sensory inputs, which then receive preferential status at subsequent levels of processing. Many everyday tasks also require us to select internal representations, such as a relevant item from memory. We show that both of these types of search are underpinned by the spatiotopic activation of sensory codes, using both fMRI and MEG data. When individuals searched for perceived and remembered targets, the MEG data highlighted a sensor level electrophysiological effect that reflects the contralateral organization of the visual system—namely, the N2pc. The fMRI data were used to identify a network of frontoparietal areas common to both types of search, as well as the early visual areas activated by the search display. We then combined fMRI and MEG data to explore the temporal dynamics of functional connections between the frontoparietal network and the early visual areas. Searching for a target item resulted in significantly enhanced phase–phase coupling between the frontoparietal network and the visual areas contralateral to the perceived or remembered location of that target. This enhancement of spatially specific phase–phase coupling occurred before the N2pc effect and was significantly associated with it on a trial-by-trial basis. The combination of these two imaging modalities suggests that perceptual and working memory search are underpinned by the synchronization of a frontoparietal network and the relevant sensory cortices.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (4): 775–786.
Published: 01 April 2015
FIGURES
| View All (5)
Abstract
View article
PDF
Learning a new word requires discrimination between a novel sequence of sounds and similar known words. We investigated whether semantic information facilitates the acquisition of new phonological representations in adults and whether this learning enhancement is modulated by overnight consolidation. Participants learned novel spoken words either consistently associated with a visual referent or with no consistent meaning. An auditory oddball task tested discrimination of these newly learned phonological forms from known words. The MMN, an electrophysiological measure of auditory discrimination, was only elicited for words learned with a consistent semantic association. Immediately after training, this semantic benefit on auditory discrimination was linked to explicit learning of the associations, where participants with greater semantic learning exhibited a larger MMN. However, although the semantic-associated words continued to show greater auditory discrimination than nonassociated words after consolidation, the MMN was no longer related to performance in learning the semantic associations. We suggest that the provision of semantic systematicity directly impacts upon the development of new phonological representations and that a period of offline consolidation may promote the abstraction of these representations.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (4): 864–877.
Published: 01 April 2014
FIGURES
| View All (5)
Abstract
View article
PDF
Selective attention biases the encoding and maintenance of representations in visual STM (VSTM). However, precise attentional mechanisms gating encoding and maintenance in VSTM and across development remain less well understood. We recorded EEG while adults and 10-year-olds used cues to guide attention before encoding or while maintaining items in VSTM. Known neural markers of spatial orienting to incoming percepts, that is, Early Directing Attention Negativity, Anterior Directing Attention Negativity, and Late Directing Attention Positivity, were examined in the context of orienting within VSTM. Adults elicited a set of neural markers that were broadly similar in preparation for encoding and during maintenance. In contrast, in children these processes dissociated. Furthermore, in children, individual differences in the amplitude of neural markers of prospective orienting related to individual differences in VSTM capacity, suggesting that children with high capacity are more efficient at selecting information for encoding into VSTM. Finally, retrospective, but not prospective, orienting in both age groups elicited the well-known marker of visual search (N2pc), indicating the recruitment of additional neural circuits when orienting during maintenance. Developmental and individual differences differentiate seemingly similar processes of orienting to perceptually available representations and to representations held in VSTM.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (2): 255–267.
Published: 01 February 2008
Abstract
View article
PDF
The ability to change our behavior is one that we frequently exert, although determining the mechanisms by which we do so is far from trivial. Task switching is a useful experimental paradigm for studying cognitive control functions. Switching between tasks is associated with a decrement in performance, or “switch-cost,” relative to repeating the same task. We have previously demonstrated that this cost is dependent on switching from performing one task to performing another; changing only our intended performance does not elicit the same performance deficit. Using event-related potentials (ERPs), we dissociated two electrophysiological indices mirroring this behavioral distinction [Astle, D. E., Jackson, G. M., & Swainson, R. Dissociating neural indices of dynamic cognitive control in advance task-set preparation: An ERP study of task switching. Brain Res, 1125 , 94–103, 2006]. However, what was unclear were the specific aspects of performance that were critical for triggering the neural mechanisms associated specifically with switching from a previously performed task. Two candidate aspects were: (i) that performance required a physical response and (ii) that the two tasks shared their responses (they had bivalent response mappings). The present study therefore compared three separate groups to explore the effects of these different aspects of performance. Each group completed the same basic task-switching paradigm, but with either an overt response or covert response, and either switching between tasks that shared their responses (bivalent response mappings) or had separate responses (univalent response mappings). When comparing precue-locked ERPs, we observed three separable components: one common to all three groups, one which primarily dissociated overt from covert responding, and one which primarily dissociated bivalent from univalent responding. We therefore concluded that changing our behavior engages at least three dissociable mechanisms. Interestingly, in the overt conditions, residual switch-costs were absent; in addition, therefore, we concluded that it is possible to engage cognitive control in advance, such that the new behavior is as efficient as were the subject to have repeated the old behavior.