Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Durk Talsma
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
A Retinotopic Attentional Trace after Saccadic Eye Movements: Evidence from Event-related Potentials
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (9): 1563–1577.
Published: 01 September 2013
FIGURES
| View All (6)
Abstract
View articletitled, A Retinotopic Attentional Trace after Saccadic Eye Movements: Evidence from Event-related Potentials
View
PDF
for article titled, A Retinotopic Attentional Trace after Saccadic Eye Movements: Evidence from Event-related Potentials
Saccadic eye movements are a major source of disruption to visual stability, yet we experience little of this disruption. We can keep track of the same object across multiple saccades. It is generally assumed that visual stability is due to the process of remapping, in which retinotopically organized maps are updated to compensate for the retinal shifts caused by eye movements. Recent behavioral and ERP evidence suggests that visual attention is also remapped, but that it may still leave a residual retinotopic trace immediately after a saccade. The current study was designed to further examine electrophysiological evidence for such a retinotopic trace by recording ERPs elicited by stimuli that were presented immediately after a saccade (80 msec SOA). Participants were required to maintain attention at a specific location (and to memorize this location) while making a saccadic eye movement. Immediately after the saccade, a visual stimulus was briefly presented at either the attended location (the same spatiotopic location), a location that matched the attended location retinotopically (the same retinotopic location), or one of two control locations. ERP data revealed an enhanced P1 amplitude for the stimulus presented at the retinotopically matched location, but a significant attenuation for probes presented at the original attended location. These results are consistent with the hypothesis that visuospatial attention lingers in retinotopic coordinates immediately following gaze shifts.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (4): 761–774.
Published: 01 April 2010
FIGURES
| View All (5)
Abstract
View articletitled, Brain Structures Involved in Visual Search in the Presence and Absence of Color Singletons
View
PDF
for article titled, Brain Structures Involved in Visual Search in the Presence and Absence of Color Singletons
It is still debated to what degree top–down and bottom–up driven attentional control processes are subserved by shared or by separate mechanisms. Interactions between these attentional control forms were investigated using a rapid event-related fMRI design, using an attentional search task. Following a prestimulus mask, target stimuli (consisting of a letter C or a mirror image of the C, enclosed in a diamond outline) were presented either at one unique location among three nontarget items (consisting of a random letter, enclosed in a circle outline; 50% probability), or at all four possible target locations (also 50% probability). On half the trials, irrelevant color singletons were presented, consisting of a color change of one of the four prestimulus masks, just prior to target appearance. Participants were required to search for a target letter inside the diamond and report its orientation. Results indicate that, in addition to a common network of parietal areas, medial frontal cortex is uniquely involved in top–down orienting, whereas bottom–up control is mainly subserved by a network of occipital and parietal areas. Additionally, we found that participants who were better able to suppress orienting to the color singleton showed middle frontal gyrus activation, and that the degree of top–down control correlated with insular activity. We conclude that, in addition to a common set of parietal areas, separate brain areas are involved in top–down and bottom–up driven attentional control, and that frontal areas play a role in the suppression of attentional capture by an irrelevant color singleton.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (7): 1098–1114.
Published: 01 July 2005
Abstract
View articletitled, Selective Attention and Multisensory Integration: Multiple Phases of Effects on the Evoked Brain Activity
View
PDF
for article titled, Selective Attention and Multisensory Integration: Multiple Phases of Effects on the Evoked Brain Activity
We used event-related potentials (ERPs) to evaluate the role of attention in the integration of visual and auditory features of multisensory objects. This was done by contrasting the ERPs to multisensory stimuli (AV) to the sum of the ERPs to the corresponding auditory-only (A) and visual-only (V) stimuli [i.e., AV vs. (A + V)]. V, A, and VA stimuli were presented in random order to the left and right hemispaces. Subjects attended to a designated side to detect infrequent target stimuli in either modality there. The focus of this report is on the ERPs to the standard (i.e., nontarget) stimuli. We used rapid variable stimulus onset asynchronies (350-650 msec) to mitigate anticipatory activity and included “no-stim” trials to estimate and remove ERP overlap from residual anticipatory processes and from adjacent stimuli in the sequence. Spatial attention effects on the processing of the unisensory stimuli consisted of a modulation of visual P1 and N1 components (at 90-130 msec and 160-200 msec, respectively) and of the auditory N1 and processing negativity (100-200 msec). Attended versus unattended multisensory ERPs elicited a combination of these effects. Multisensory integration effects consisted of an initial frontal positivity around 100 msec that was larger for attended stimuli. This was followed by three phases of centro-medially distributed effects of integration and/or attention beginning at around 160 msec, and peaking at 190 (scalp positivity), 250 (negativity), and 300-500 msec (positivity) after stimulus onset. These integration effects were larger in amplitude for attended than for unattended stimuli, providing neural evidence that attention can modulate multisensory-integration processes at multiple stages.