Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
E. T. Possing
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (6): 905–917.
Published: 01 June 2005
Abstract
View article
PDF
Behavioral and neurophysiological effects of word imageability and concreteness remain a topic of central interest in cognitive neuroscience and could provide essential clues for understanding how the brain processes conceptual knowledge. We examined these effects using event-related functional magnetic resonance imaging while participants identified concrete and abstract words. Relative to nonwords, concrete and abstract words both activated a left-lateralized network of multimodal association areas previously linked with verbal semantic processing. Areas in the left lateral temporal lobe were equally activated by both word types, whereas bilateral regions including the angular gyrus and the dorsal prefrontal cortex were more strongly engaged by concrete words. Relative to concrete words, abstract words activated left inferior frontal regions previously linked with phonological and verbal working memory processes. The results show overlapping but partly distinct neural systems for processing concrete and abstract concepts, with greater involvement of bilateral association areas during concrete word processing, and processing of abstract concepts almost exclusively by the left hemisphere.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2003) 15 (3): 372–393.
Published: 01 April 2003
Abstract
View article
PDF
People can discriminate real words from nonwords even when the latter are orthographically and phonologically word-like, presumably because words activate specific lexical and/or semantic information. We investigated the neural correlates of this identification process using event-related functional magnetic resonance imaging (fMRI). Participants performed a visual lexical decision task under conditions that encouraged specific word identification: Nonwords were matched to words on orthographic and phonologic characteristics, and accuracy was emphasized over speed. To identify neural responses associated with activation of nonsemantic lexical information, processing of words and nonwords with many lexical neighbors was contrasted with processing of items with no neighbors. The fMRI data showed robust differences in activation by words and word-like nonwords, with stronger word activation occurring in a distributed, left hemisphere network previously associated with semantic processing, and stronger nonword activation occurring in a posterior inferior frontal area previously associated with grapheme-to-phoneme mapping. Contrary to lexicon-based models of word recognition, there were no brain areas in which activation increased with neighborhood size. For words, activation in the left prefrontal, angular gyrus, and ventrolateral temporal areas was stronger for items without neighbors, probably because accurate responses to these items were more dependent on activation of semantic information. The results show neural correlates of access to specific word information. The absence of facilitatory lexical neighborhood effects on activation in these brain regions argues for an interpretation in terms of semantic access. Because subjects performed the same task throughout, the results are unlikely to be due to task-specific attentional, strategic, or expectancy effects.