Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-7 of 7
Edward E. Smith
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Lateral Inferotemporal Cortex Maintains Conceptual—Semantic Representations in Verbal Working Memory
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (12): 2035–2049.
Published: 01 December 2007
Abstract
View article
PDF
Verbal working memory, that is, the temporary maintenance of linguistic information in an activated state, is typically assumed to rely on phonological representations. Recent evidence from behavioral, neuropsychological, and electrophysiological studies, however, suggests that conceptual-semantic representations may also be maintained in an activated state. We developed a new semantic working memory task that involves the maintenance of a novel conceptual combination. Functional magnetic resonance imaging data acquired during the maintenance of conceptual combinations, relative to an item recognition task without the possibility of conceptual combination, demonstrate increased activation in the posterior left middle and inferior temporal gyri (known to be involved in conceptual representations) and left inferior frontal gyrus (known to be involved in semantic control processes). We suggest that this temporo-frontal system supports maintenance of conceptual information in working memory, with the frontal regions controlling the sustained activation of heteromodal conceptual representations in the inferior temporal cortex.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2000) 12 (Supplement 2): 130–144.
Published: 01 November 2000
Abstract
View article
PDF
Working memory is thought to include a mechanism that allows for the coding of order information. One question of interest is how order information is coded, and how that code is neurally implemented. Here we report both behavioral and fMRI findings from an experiment that involved comparing two tasks, an item-memory task and an order-memory task. In each case, five letters were presented for storage, followed after a brief interval by a set of probe letters. In the case of the item-memory task, the two letters were identical, and the subject responded to the question, “Was this letter one of the items you saw?”. In the case of the order-memory task, the letters were different, and subjects responded to the question, “Are these two letters in the order in which you saw them?”. Behaviorally, items that were further apart in the sequence elicited faster reaction times and higher accuracy in the Order task. Areas that were significantly more activated in the Order condition included the parietal and prefrontal cortex. Parietal activations overlapped those involved in number processing, leading to the suggestion that the underlying representation of order and numbers may share a common process, coding for magnitude.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2000) 12 (1): 174–187.
Published: 01 January 2000
Abstract
View article
PDF
Age-related decline in working memory figures prominently in theories of cognitive aging. However, the effects of aging on the neural substrate of working memory are largely unknown. Positron emission tomography (PET) was used to investigate verbal and spatial short-term storage (3 sec) in older and younger adults. Previous investigations with younger subjects performing these same tasks have revealed asymmetries in the lateral organization of verbal and spatial working memory. Using volume of interest (VOI) analyses that specifically compared activation at sites identified with working memory to their homologous twin in the opposite hemisphere, we show pronounced age differences in this organization, particularly in the frontal lobes: In younger adults, activation is predominantly left lateralized for verbal working memory, and right lateralized for spatial working memory, whereas older adults show a global pattern of anterior bilateral activation for both types of memory. Analyses of frontal subregions indicate that several underlying patterns contribute to global bilaterality in older adults: most notably, bilateral activation in areas associated with rehearsal, and paradoxical laterality in dorsolateral prefrontal sites (DLPFC; greater left activation for spatial and greater right activation for verbal). We consider several mechanisms that could account for these age differences including the possibility that bilateral activation reflects recruitment to compensate for neural decline.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2000) 12 (1): 188–196.
Published: 01 January 2000
Abstract
View article
PDF
Older adults were tested on a verbal working memory task that used the item-recognition paradigm. On some trials of this task, response-conflict was created by presenting test-items that were familiar but were not members of a current set of items stored in memory. These items required a negative response, but their familiarity biased subjects toward a positive response. Younger subjects show an interference effect on such trials, and this interference is accompanied by activation of a region of left lateral prefrontal cortex. However, there has been no evidence that the activation in this region is causally related to the interference that the subjects exhibit. In the present study, we demonstrate that older adults show more behavioral interference than younger subjects on this task, and they also show no reliable activation at the same lateral prefrontal site. This leads to the conclusion that this prefrontal site is functionally involved in mediating resolution among conflicting responses or among conflicting representations in working memory.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1997) 9 (4): 462–475.
Published: 01 July 1997
Abstract
View article
PDF
We report an experiment that assesses the effect of variations in memory load on brain activations that mediate verbal working memory. The paradigm that forms the basis of this experiment is the “ n -back” task in which subjects must decide for each letter in a series whether it matches the one presented n items back in the series. This task is of interest because it recruits processes involved in both the storage and manipulation of information in working memory. Variations in task difficulty were accomplished by varying the value of n . As n increased, subjects showed poorer behavioral performance as well as monotonically increasing magnitudes of brain activation in a large number of sites that together have been identified with verbal working-memory processes. By contrast, there was no reliable increase in activation in sites that are unrelated to working memory. These results validate the use of parametric manipulation of task variables in neuroimaging research, and they converge with the subtraction paradigm used most often in neuroimaging. In addition, the data support a model of working memory that includes both storage and executive processes that recruit a network of brain areas, all of which are involved in task performance.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1997) 9 (1): 167–169.
Published: 01 January 1997
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1995) 7 (3): 337–356.
Published: 01 July 1995
Abstract
View article
PDF
We used positron emission tomography (PET) to answer the following question: Is working memory a unitary storage system, or does it instead include different storage buffers for different kinds of information? In Experiment 1, PET measures were taken while subjects engaged in either a spatial-memory task (retain the position of three dots for 3 sec) or an object-memory task (retain the identity of two objects for 3 sec). The results manifested a striking double dissociation, as the spatial task activated only right-hemisphere regions, whereas the object task activated primarily left-hemisphere regions. The spatial (right-hemisphere) regions included occipital, parietal, and prefrontal areas, while the object (left-hemisphere) regions included inferotemporal and parietal areas. Experiment 2 was similar to Experiment 1 except that the stimuli and trial events were identical for the spatial and object tasks; whether spatial or object memory was required was manipulated by instructions. The PET results once more showed a double dissociation, as the spatial task activated primarily right-hemisphere regions (again including occipital, parietal and prefrontal areas), whereas the object task activated only left-hemisphere regions (again including inferotemporal and parietal areas). Experiment 3 was a strictly behavioral study, which produced another double dissociation. It used the same tasks as Experiment 2, and showed that a variation in spatial similarity affected performance in the spatial but not the object task, whereas a variation in shape similarity affected performance in the object but not the spatial task. Taken together, the results of the three experiments clearly imply that different working-memory buffers are used for storing spatial and object information.