Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Einat Liebenthal
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (9): 1553–1562.
Published: 01 September 2013
FIGURES
| View All (8)
Abstract
View article
PDF
In the visual modality, perceptual demand on a goal-directed task has been shown to modulate the extent to which irrelevant information can be disregarded at a sensory-perceptual stage of processing. In the auditory modality, the effect of perceptual demand on neural representations of task-irrelevant sounds is unclear. We compared simultaneous ERPs and fMRI responses associated with task-irrelevant sounds across parametrically modulated perceptual task demands in a dichotic-listening paradigm. Participants performed a signal detection task in one ear (Attend ear) while ignoring task-irrelevant syllable sounds in the other ear (Ignore ear). Results revealed modulation of syllable processing by auditory perceptual demand in an ROI in middle left superior temporal gyrus and in negative ERP activity 130–230 msec post stimulus onset. Increasing the perceptual demand in the Attend ear was associated with a reduced neural response in both fMRI and ERP to task-irrelevant sounds. These findings are in support of a selection model whereby ongoing perceptual demands modulate task-irrelevant sound processing in auditory cortex.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (7): 1174–1188.
Published: 01 July 2008
Abstract
View article
PDF
Recent studies suggest that the left superior temporal gyrus and sulcus (LSTG/S) play a role in speech perception, although the precise function of these areas remains unclear. Here, we test the hypothesis that regions in the LSTG/S play a role in the categorization of speech phonemes, irrespective of the acoustic properties of the sounds and prior experience of the listener with them. We examined changes in functional magnetic resonance imaging brain activation related to a perceptual shift from nonphonetic to phonetic analysis of sine-wave speech analogs. Subjects performed an identification task before scanning and a discrimination task during scanning with phonetic (P) and nonphonetic (N) sine-wave sounds, both before (Pre) and after (Post) being exposed to the phonetic properties of the P sounds. Behaviorally, experience with the P sounds induced categorical identification of these sounds. In the PostP > PreP and PostP > PostN contrasts, an area in the posterior LSTG/S was activated. For both P and N sounds, the activation in this region was correlated with the degree of categorical identification in individual subjects. The results suggest that these areas in the posterior LSTG/S are sensitive neither to the acoustic properties of speech nor merely to the presence of phonetic information, but rather to the listener's awareness of category representations for auditory inputs.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (4): 665–679.
Published: 01 April 2006
Abstract
View article
PDF
In previous functional neuroimaging studies, left anterior temporal and temporal-parietal areas responded more strongly to sentences than to randomly ordered lists of words. The smaller response for word lists could be explained by either (1) less activation of syntactic processes due to the absence of syntactic structure in the random word lists or (2) less activation of semantic processes resulting from failure to combine the content words into a global meaning. To test these two explanations, we conducted a functional magnetic resonance imaging study in which word order and combinatorial word meaning were independently manipulated during auditory comprehension. Subjects heard six different stimuli: normal sentences, semantically incongruent sentences in which content words were randomly replaced with other content words, pseudoword sentences, and versions of these three sentence types in which word order was randomized to remove syntactic structure. Effects of syntactic structure (greater activation to sentences than to word lists) were observed in the left anterior superior temporal sulcus and left angular gyrus. Semantic effects (greater activation to semantically congruent stimuli than either incongruent or pseudoword stimuli) were seen in widespread, bilateral temporal lobe areas and the angular gyrus. Of the two regions that responded to syntactic structure, the angular gyrus showed a greater response to semantic structure, suggesting that reduced activation for word lists in this area is related to a disruption in semantic processing. The anterior temporal lobe, on the other hand, was relatively insensitive to manipulations of semantic structure, suggesting that syntactic information plays a greater role in driving activation in this area.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2003) 15 (4): 549–558.
Published: 15 May 2003
Abstract
View article
PDF
Sine wave replicas of spoken words can be perceived both as nonphonetic auditory forms and as words, depending on a listener's experience. In this study, brain areas activated by sine wave words were studied with fMRI in two conditions: when subjects perceived the sounds spontaneously as nonphonetic auditory forms (“naïve condition”) and after instruction and brief practice attending to their phonetic attributes (“informed condition”). The test items were composed such that half replicated natural words (“phonetic items”) and the other half did not, because the tone analogs of the first and third formants had been temporally reversed (“nonphonetic items”). Subjects were asked to decide whether an isolated tone analog of the second formant (T2) presented before the sine wave word (T1234) was included in it. Experience in attending to the phonetic properties of the sinusoids interfered with this auditory matching task and was accompanied by a decrease in auditory cortex activation with word replicas but not with the acoustically matched nonphonetic items. Because the activation patterns elicited by equivalent acoustic test items depended on a listener's awareness of their phonetic potential, this indicates that the analysis of speech sounds in the auditory cortex is distinct from the simple resolution of auditory form, and is not a mere consequence of acoustic complexity. Because arbitrary acoustic patterns did not evoke the response observed for phonetic patterns, these findings suggest that the perception of speech is contingent on the presence of familiar patterns of spectral variation. The results are consistent with a short-term functional reorganization of auditory analysis induced by phonetic experience with sine wave replicas and contingent on the dynamic acoustic structure of speech.