Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Eleni Orfanidou
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (1): 20–40.
Published: 01 January 2016
FIGURES
| View All (6)
Abstract
View article
PDF
The study of signed languages allows the dissociation of sensorimotor and cognitive neural components of the language signal. Here we investigated the neurocognitive processes underlying the monitoring of two phonological parameters of sign languages: handshape and location. Our goal was to determine if brain regions processing sensorimotor characteristics of different phonological parameters of sign languages were also involved in phonological processing, with their activity being modulated by the linguistic content of manual actions. We conducted an fMRI experiment using manual actions varying in phonological structure and semantics: (1) signs of a familiar sign language (British Sign Language), (2) signs of an unfamiliar sign language (Swedish Sign Language), and (3) invented nonsigns that violate the phonological rules of British Sign Language and Swedish Sign Language or consist of nonoccurring combinations of phonological parameters. Three groups of participants were tested: deaf native signers, deaf nonsigners, and hearing nonsigners. Results show that the linguistic processing of different phonological parameters of sign language is independent of the sensorimotor characteristics of the language signal. Handshape and location were processed by different perceptual and task-related brain networks but recruited the same language areas. The semantic content of the stimuli did not influence this process, but phonological structure did, with nonsigns being associated with longer RTs and stronger activations in an action observation network in all participants and in the supramarginal gyrus exclusively in deaf signers. These results suggest higher processing demands for stimuli that contravene the phonological rules of a signed language, independently of previous knowledge of signed languages. We suggest that the phonological characteristics of a language may arise as a consequence of more efficient neural processing for its perception and production.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (8): 1237–1252.
Published: 01 August 2006
Abstract
View article
PDF
An important method for studying how the brain processes familiar stimuli is to present the same item on more than one occasion and measure how responses change with repetition. Here we use repetition priming in a sparse functional magnetic resonance imaging (fMRI) study to probe the neuroanatomical basis of spoken word recognition and the representations of spoken words that mediate repetition priming effects. Participants made lexical decisions to words and pseudowords spoken by a male or female voice that were presented twice, with half of the repetitions in a different voice. Behavioral and neural priming was observed for both words and pseudowords and was not affected by voice changes. The fMRI data revealed an elevated response to words compared to pseudowords in both posterior and anterior temporal regions, suggesting that both contribute to word recognition. Both reduced and elevated activation for second presentations (repetition suppression and enhancement) were observed in frontal and posterior regions. Correlations between behavioral priming and neural repetition suppression were observed in frontal regions, suggesting that repetition priming effects for spoken words reflect changes within systems involved in generating behavioral responses. Based on the current results, these processes are sufficiently abstract to display priming despite changes in the physical form of the stimulus and operate equivalently for words and pseudowords.