Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-11 of 11
Elisabetta Làdavas
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (10): 1517–1531.
Published: 01 October 2018
FIGURES
| View All (5)
Abstract
View article
PDF
Motion information can reach V5/MT through two parallel routes: one conveying information at early latencies through a direct subcortical route and the other reaching V5 later via recurrent projections through V1. Here, we tested the hypothesis that input via the faster direct pathway depends on motion characteristics. To this end, we presented motion stimuli to healthy human observers at different velocities (4.4°/sec vs. 23°/sec) with static stimuli as controls while applying transcranial magnetic stimulation (TMS) pulses over V5 or V1. We probed for TMS interference with objective (two-alternative forced choice [2AFC]) and subjective (awareness) measures of motion processing at six TMS delays from stimulus onset (poststimulus window covered: ∼27–160 msec). Our results for V5–TMS showed earlier interference with objective performance for fast motion (53.3 msec) than slow motion (80 msec) stimuli. Importantly, TMS-induced decreases in objective measures of motion processing did correlate with decreases in subjective measures for slow but not fast motion stimuli. Moreover, V1–TMS induced a temporally unspecific interference with visual processing as it impaired the processing of both motion and static stimuli at the same delays. These results are in accordance with fast moving stimuli reaching V5 through a different route than slow moving stimuli. The differential latencies and coupling to awareness suggest distinct involvement of a direct (i.e., colliculo-extrastriate) connection bypassing V1 depending on stimulus velocity (fast vs. slow). Implication of a direct pathway in the early processing of fast motion may have evolved through its behavioral relevance.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (11): 2564–2577.
Published: 01 November 2014
FIGURES
| View All (6)
Abstract
View article
PDF
Visual threat-related signals are not only processed via a cortical geniculo-striatal pathway to the amygdala but also via a subcortical colliculo-pulvinar-amygdala pathway, which presumably mediates implicit processing of fearful stimuli. Indeed, hemianopic patients with unilateral damage to the geniculo-striatal pathway have been shown to respond faster to seen happy faces in their intact visual field when unseen fearful faces were concurrently presented in their blind field [Bertini, C., Cecere, R., & Làdavas, E. I am blind, but I “see” fear. Cortex, 49, 985–993, 2013]. This behavioral facilitation in the presence of unseen fear might reflect enhanced processing of consciously perceived faces because of early activation of the subcortical pathway for implicit fear perception, which possibly leads to a modulation of cortical activity. To test this hypothesis, we examined ERPs elicited by fearful and happy faces presented to the intact visual field of right and left hemianopic patients, whereas fearful, happy, or neutral faces were concurrently presented in their blind field. Results showed that the amplitude of the N170 elicited by seen happy faces was selectively increased when an unseen fearful face was concurrently presented in the blind field of right hemianopic patients. These results suggest that when the geniculo-striate visual pathway is lesioned, the rapid and implicit processing of threat signals can enhance facial encoding. Notably, the N170 modulation was only observed in left-lesioned patients, favoring the hypothesis that implicit subcortical processing of fearful signals can influence face encoding only when the right hemisphere is intact.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (7): 1741–1751.
Published: 01 July 2011
FIGURES
| View All (4)
Abstract
View article
PDF
Autoscopic phenomena refer to complex experiences involving the illusory reduplication of one's own body. Here we report the third long-lasting case of autoscopy in a patient with right occipital lesion. Instead of the commonly reported frontal mirror view (fantôme spéculaire), the patient saw her head and upper trunk laterally in side view (fantôme de profil). We found that the visual appearance and completeness of the autoscopic image could be selectively modulated by active and passive movements, without being influenced by imagining the same movements or by tactile and auditory stimulation. Eyes closure did not disrupt either the perception of the autoscopic body or the effects of the motor stimulation. Moreover, the visual body reduplication was coded neither in purely eye-centered nor in head-centered frames of reference, suggesting the involvement of egocentric coordinate systems (eyes and head centered). A follow-up examination highlighted the stability of the visual characteristics of the body reduplication and its shift induced by displacement of both head and eyes. These findings support the view that autoscopic phenomena have a multisensory motor origin and proprioceptive signals may play an important role in modulating the illusory visual reduplication of the patient's own body, most likely via cross-modal modulation of extrastriate areas involved in body and face perception.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (3): 503–513.
Published: 01 March 2011
FIGURES
Abstract
View article
PDF
The perception of tactile stimuli on the face is modulated if subjects concurrently observe a face being touched; this effect, termed visual remapping of touch (VRT), is maximum for observing one's own face. In the present fMRI study, we investigated the neural basis of the VRT effect. Participants in the scanner received tactile stimuli, near the perceptual threshold, on their right, left, or both cheeks. Concurrently, they watched movies depicting their own face, another person's face, or a ball that could be touched or only approached by human fingers. Participants were requested to distinguish between unilateral and bilateral tactile stimulation. Behaviorally, perception of tactile stimuli was modulated by viewing a tactile stimulation, with a stronger effect when viewing one's own face being touched. In terms of brain activity, viewing touch was related with an enhanced activity in the ventral intraparietal area. The specific effect of viewing touch on oneself was instead related with a reduced activity in both the ventral premotor cortex and the somatosensory cortex. The present findings suggest that VRT is supported by a network of fronto-parietal areas. The ventral intraparietal area might remap visual information about touch onto tactile processing. Ventral premotor cortex might specifically modulate multisensory interaction when sensory information is related to one's own body. Then this activity might back project to the somatosensory cortices, thus affecting tactile perception.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (8): 1888–1899.
Published: 01 August 2010
FIGURES
| View All (4)
Abstract
View article
PDF
Converging evidence suggests that emotion processing mediated by ventromedial prefrontal cortex (vmPFC) is necessary to prevent personal moral violations. In moral dilemmas, for example, patients with lesions in vmPFC are more willing than normal controls to approve harmful actions that maximize good consequences (e.g., utilitarian moral judgments). Yet, none of the existing studies has measured subjects' emotional responses while they considered moral dilemmas. Therefore, a direct link between emotion processing and moral judgment is still lacking. Here, vmPFC patients and control participants considered moral dilemmas while skin conductance response (SCR) was measured as a somatic index of affective state. Replicating previous evidence, vmPFC patients approved more personal moral violations than did controls. Critically, we found that, unlike control participants, vmPFC patients failed to generate SCRs before endorsing personal moral violations. In addition, such anticipatory SCRs correlated negatively with the frequency of utilitarian judgments in normal participants. These findings provide direct support to the hypothesis that the vmPFC promotes moral behavior by mediating the anticipation of the emotional consequences of personal moral violations.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (3): 413–426.
Published: 01 March 2010
FIGURES
| View All (4)
Abstract
View article
PDF
Several studies have shown that the motor system is involved in action perception, suggesting that action concepts are represented through sensory–motor processes. Such conclusions imply that motor system impairments should diminish action perception. To test this hypothesis, a group of 10 brain-damaged patients with hemiplegia (specifically, a lesion at the motor system that affected the contralesional arm) viewed point-light displays of arm gestures and attempted to name each gesture. To create the dynamic stimuli, patients individually performed simple gestures with their unaffected arm while being videotaped. The videotapes were converted into point-light animations. Each action was presented as it had been performed, that is, as having been produced by the observer's unaffected arm, and in its mirror reversed orientation, that is, as having been produced by the observer's hemiplegic arm. Action recognition accuracy by patients with hemiplegia was compared with that by 8 brain-damaged patients without any motor deficit and by 10 healthy controls. Overall, performance was better in control observers than in patients. Most importantly, performance by hemiplegic patients, but not by nonhemiplegic patients and controls, varied systematically as a function of the observed limb. Action recognition was best when hemiplegic patients viewed actions that appeared to have been performed by their unaffected arm. Action recognition performance dropped significantly when hemiplegic patients viewed actions that appeared to have been produced with their hemiplegic arm or the corresponding arm of another person. The results of a control study involving the recognition of point-light defined animals in motion indicate that a generic deficit to visual and cognitive functions cannot account for this laterality-specific deficit in action recognition. Taken together, these results suggest that motor cortex impairment decreases visual sensitivity to human action. Specifically, when a cortical lesion renders an observer incapable of performing an observed action, action perception is compromised, possibly by a failure to map the observed action onto the observer's contralesional hemisoma.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (2): 275–286.
Published: 01 February 2007
Abstract
View article
PDF
The contribution of the medial prefrontal cortex, particularly the anterior cingulate cortex (ACC), to cognitive control remains controversial. Here, we examined whether the rostral ACC is necessary for reactive adjustments in cognitive control following the occurrence of response conflict [Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. Conflict monitoring and cognitive control. Psychological Review, 108 , 624–652, 2001]. To this end, we assessed 8 patients with focal lesions involving the rostral sector of the ACC (rACC patients), 6 patients with lesions outside the frontal cortex (non-FC patients), and 11 healthy subjects on a variant of the Simon task in which levels of conflict were manipulated on a trial-by-trial basis. More specifically, we compared Simon effects (i.e., the difference in performance between congruent and incongruent trials) on trials that were preceded by high-conflict (i.e., incongruent) trials with those on trials that were preceded by low-conflict (i.e., congruent) trials. Normal controls and non-FC patients showed a reduction of the Simon effect when the preceding trial was incongruent, suggestive of an increase in cognitive control in response to the occurrence of response conflict. In contrast, rACC patients attained comparable Simon effects following congruent and incongruent events, indicating a failure to modulate their performance depending on the conflict level generated by the preceding trial. Furthermore, damage to the rostral ACC impaired the posterror slowing, a further behavioral phenomenon indicating reactive adjustments in cognitive control. These results provide insights into the functional organization of the medial prefrontal cortex in humans and its role in the dynamic regulation of cognitive control.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (9): 1442–1452.
Published: 01 September 2005
Abstract
View article
PDF
In the present study, we investigated the possibility that bimodal audiovisual stimulation of the affected hemifield can improve perception of the visual events in the blind hemifield of hemianopic patients, as it was previously demonstrated in neglect patients. Moreover, it has been shown that “hetero-modal” and “sensory-specific” cortices are involved in cross-modal integration. Thus, the second aim of the present study was to examine whether audiovisual integration influences visual detection in patients with different cortical lesions responsible of different kinds of visual disorders. More specifically, we investigated cross-modal, audiovisual integration in patients with visual impairment due to a visual field deficit (e.g., hemianopia) or visuospatial attentional deficit (e.g., neglect) and patients with both hemianopia and neglect. Patients were asked to detect visual stimuli presented alone or in combination with auditory stimuli that could be spatially aligned or not with the visual ones. The results showed an enhancement of visual detection in cross-modal condition (spatially aligned condition) comparing to unimodal visual condition only in patients with hemianopia or neglect; by contrast, the multi-sensory integration did not occur when patients presented both deficits. These data suggest that patients with visual disorders can enormously benefit the multisensory integration. Moreover, they showed a different influence of cortical lesion on multi-sensory integration. Thus, the present results show the important adaptive meaning of multisensory integration and are very promising with respect to the possibility of recovery from visual and spatial impairments.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2002) 14 (7): 1030–1043.
Published: 01 October 2002
Abstract
View article
PDF
In the present study we report neuropsychological evidence of the existence of an auditory peripersonal space representation around the head in humans and its characteristics. In a group of right brain-damaged patients with tactile extinction, we found that a sound delivered near the ipsilesional side of the head (20 cm) strongly extinguished a tactile stimulus delivered to the contralesional side of the head (cross-modal auditory-tactile extinction). By contrast, when an auditory stimulus was presented far from the head (70 cm), cross-modal extinction was dramatically reduced. This spatially specific cross-modal extinction was most consistently found (i.e., both in the front and back spaces) when a complex sound was presented, like a white noise burst. Pure tones produced spatially specific cross-modal extinction when presented in the back space, but not in the front space. In addition, the most severe cross-modal extinction emerged when sounds came from behind the head, thus showing that the back space is more sensitive than the front space to the sensory interaction of auditory-tactile inputs. Finally, when cross-modal effects were investigated by reversing the spatial arrangement of cross-modal stimuli (i.e., touch on the right and sound on the left), we found that an ipsilesional tactile stimulus, although inducing a small amount of cross-modal tactile-auditory extinction, did not produce any spatial-specific effect. Therefore, the selective aspects of cross-modal interaction found near the head cannot be explained by a competition between a damaged left spatial representation and an intact right spatial representation. Thus, consistent with neurophysiological evidence from monkeys, our findings strongly support the existence, in humans, of an integrated cross-modal system coding auditory and tactile stimuli near the body, that is, in the peripersonal space.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2002) 14 (1): 62–69.
Published: 01 January 2002
Abstract
View article
PDF
Cross-modal spatial integration between auditory and visual stimuli is a common phenomenon in space perception. The principles underlying such integration have been outlined by neurophysiological and behavioral studies in animals (Stein & Meredith, 1993), but little evidence exists proving that similar principles occur also in humans. In the present study, we explored such possibility in patients with visual neglect, namely, patients with visuospatial impairment. To test this hypothesis, neglect patients were required to detect brief flash of light presented in one of six spatial positions, either in a unimodal condition (i.e., only visual stimuli were presented) or in a cross-modal condition (i.e., a sound was presented simultaneously to the visual target, either at the same spatial position or a tone of the remaining five possible positions). The results showed an improvement of visual detection when visual and auditory stimuli were originating from the same position in space or at close spatial disparity (168). In contrast, no improvement was found when the spatial separation of visual and auditory stimuli was larger than 168. Moreover, the improvement was larger for visual positions that were more affected by the spatial impairment, i.e., the most peripheral positions in the left visual field (LVF). In conclusion, the results of the present study considerably extend our knowledge about the multisensory integration, by showing in humans the existence of an integrated visuoauditory system with functional properties similar to those found in animals.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1998) 10 (5): 581–589.
Published: 01 September 1998
Abstract
View article
PDF
Current interpretations of extinction suggest that the disorder is due to an unbalanced competition between ipsilesional and contralesional representations of space. The question addressed in this study is whether the competition between left and right representations of space in one sensory modality (i.e., touch) can be reduced or exacerbated by the activation of an intact spatial representation in a different modality that is functionally linked to the damaged representation (i.e., vision). This hypothesis was tested in 10 right-hemisphere lesioned patients who suffered from reliable tactile extinction. We found that a visual stimulus presented near the patient's ipsilesional hand (i.e., visual peripersonal space) inhibited the processing of a tactile stimulus delivered on the contralesional hand (cross-modal visuotactile extinction) to the same extent as did an ipsilesional tactile stimulation (unimodal tactile extinction). It was also found that a visual stimulus presented near the contralesional hand improved the detection of a tactile stimulus applied to the same hand. In striking contrast, less modulatory effects of vision on touch perception were observed when a visual stimulus was presented far from the space immediately around the patient's hand (i.e., extrapersonal space). This study clearly demonstrates the existence of a visual peripersonal space centered on the hand in humans and its modulatory effects on tactile perception. These findings are explained by referring to the activity of bimodal neurons in premotor and parietal cortex of macaque, which have tactile receptive fields on the hand and corresponding visual receptive fields in the space immediately adjacent to the tactile fields.