Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Elliot T. Berkman
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (7): 1390–1402.
Published: 01 July 2014
FIGURES
| View All (4)
Abstract
View article
PDF
Craving of unhealthy food is a common target of self-regulation, but the neural systems underlying this process are understudied. In this study, participants used cognitive reappraisal to regulate their desire to consume idiosyncratically craved or not craved energy-dense foods, and neural activity during regulation was compared with each other and with the activity during passive viewing of energy-dense foods. Regulation of both food types elicited activation in classic top–down self-regulation regions including the dorsolateral prefrontal, inferior frontal, and dorsal anterior cingulate cortices. This main effect of regulation was qualified by an interaction, such that activation in these regions was significantly greater during reappraisal of craved (versus not craved) foods and several regions, including the dorsolateral prefrontal, inferior frontal, medial frontal, and dorsal anterior cingulate cortices, were uniquely active during regulation of personally craved foods. Body mass index significantly negatively correlated with regulation-related activation in the right dorsolateral PFC, thalamus, and bilateral dorsal ACC and with activity in nucleus accumbens during passive viewing of craved (vs. neutral, low-energy density) foods. These results suggest that several of the brain regions involved in the self-regulation of food craving are similar to other kinds of affective self-regulation and that others are sensitive to the self-relevance of the regulation target.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (11): 2447–2459.
Published: 01 November 2010
FIGURES
Abstract
View article
PDF
Persuasion is at the root of countless social exchanges in which one person or group is motivated to have another share its beliefs, desires, or behavioral intentions. Here, we report the first three functional magnetic resonance imaging studies to investigate the neurocognitive networks associated with feeling persuaded by an argument. In the first two studies, American and Korean participants, respectively, were exposed to a number of text-based persuasive messages. In both Study 1 and Study 2, feeling persuaded was associated with increased activity in posterior superior temporal sulcus bilaterally, temporal pole bilaterally, and dorsomedial prefrontal cortex. The findings suggest a discrete set of underlying mechanisms in the moment that the persuasion process occurs, and are strengthened by the fact that the results replicated across two diverse linguistic and cultural groups. Additionally, a third study using region-of-interest analyses demonstrated that neural activity in this network was also associated with persuasion when a sample of American participants viewed video-based messages. In sum, across three studies, including two different cultural groups and two types of media, persuasion was associated with a consistent network of regions in the brain. Activity in this network has been associated with social cognition and mentalizing and is consistent with models of persuasion that emphasize the importance of social cognitive processing in determining the efficacy of persuasive communication.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (9): 1970–1979.
Published: 01 September 2010
FIGURES
| View All (4)
Abstract
View article
PDF
Goal pursuit in humans sometimes involves approaching unpleasant and avoiding pleasant stimuli, such as when a dieter chooses to eat vegetables (although he does not like them) instead of doughnuts (which he greatly prefers). Previous neuroscience investigations have established a left–right prefrontal asymmetry between approaching pleasant and avoiding unpleasant stimuli, but these investigations typically do not untangle the roles of action motivation (approach vs. avoidance) and stimulus valence (pleasant vs. unpleasant) in this asymmetry. Additionally, studies on asymmetry have been conducted almost exclusively using electroencephalography and have been difficult to replicate using functional magnetic resonance imaging (fMRI). The present fMRI study uses a novel goal pursuit task that separates action motivation from stimulus valence and a region-of-interest analysis approach to address these limitations. Results suggest that prefrontal asymmetry is associated with action motivation and not with stimulus valence. Specifically, there was increased left (vs. right) activation in dorsolateral prefrontal cortex during approach (vs. avoidance) actions regardless of the stimulus valence, but no such effect was observed for pleasant compared to unpleasant stimuli. This asymmetry effect during approach–avoidance action motivations occurred in the dorsolateral but not orbito-frontal aspects of prefrontal cortex. Also, individual differences in approach–avoidance motivation moderated the effect such that increasing trait approach motivation was associated with greater left-sided asymmetry during approach actions (regardless of the stimulus valence). Together, these results support the notion that prefrontal asymmetry is associated with action motivation regardless of stimulus valence and, as such, might be linked with goal pursuit processes more broadly.