Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Emanuela Galante
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (5): 805–815.
Published: 01 May 2017
FIGURES
| View All (4)
Abstract
View articletitled, The Pivotal Role of the Right Parietal Lobe in Temporal Attention
View
PDF
for article titled, The Pivotal Role of the Right Parietal Lobe in Temporal Attention
The visual system is extremely efficient at detecting events across time even at very fast presentation rates; however, discriminating the identity of those events is much slower and requires attention over time, a mechanism with a much coarser resolution [Cavanagh, P., Battelli, L., & Holcombe, A. O. Dynamic attention. In A. C. Nobre & S. Kastner (Eds.), The Oxford handbook of attention (pp. 652–675). Oxford: Oxford University Press, 2013]. Patients affected by right parietal lesion, including the TPJ, are severely impaired in discriminating events across time in both visual fields [Battelli, L., Cavanagh, P., & Thornton, I. M. Perception of biological motion in parietal patients. Neuropsychologia, 41, 1808–1816, 2003]. One way to test this ability is to use a simultaneity judgment task, whereby participants are asked to indicate whether two events occurred simultaneously or not. We psychophysically varied the frequency rate of four flickering disks, and on most of the trials, one disk (either in the left or right visual field) was flickering out-of-phase relative to the others. We asked participants to report whether two left-or-right-presented disks were simultaneous or not. We tested a total of 23 right and left parietal lesion patients in Experiment 1, and only right parietal patients showed impairment in both visual fields while their low-level visual functions were normal. Importantly, to causally link the right TPJ to the relative timing processing, we ran a TMS experiment on healthy participants. Participants underwent three stimulation sessions and performed the same simultaneity judgment task before and after 20 min of low-frequency inhibitory TMS over right TPJ, left TPJ, or early visual area as a control. rTMS over the right TPJ caused a bilateral impairment in the simultaneity judgment task, whereas rTMS over left TPJ or over early visual area did not affect performance. Altogether, our results directly link the right TPJ to the processing of relative time.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (8): 1507–1516.
Published: 01 August 2008
Abstract
View articletitled, Is it Mine? Hemispheric Asymmetries in Corporeal Self-recognition
View
PDF
for article titled, Is it Mine? Hemispheric Asymmetries in Corporeal Self-recognition
The aim of this study was to investigate whether the recognition of “self body parts” is independent from the recognition of other people's body parts. If this is the case, the ability to recognize “self body parts” should be selectively impaired after lesion involving specific brain areas. To verify this hypothesis, patients with lesion of the right (right brain-damaged [RBD]) or left (left brain-damaged [LBD]) hemisphere and healthy subjects were submitted to a visual matching-to-sample task in two experiments. In the first experiment, stimuli depicted their own body parts or other people's body parts. In the second experiment, stimuli depicted parts of three categories: objects, bodies, and faces. In both experiments, participants were required to decide which of two vertically aligned images (the upper or the lower one) matched the central target stimulus. The results showed that the task indirectly tapped into bodily self-processing mechanisms, in that both LBD patients and normal subjects performed the task better when they visually matched their own, as compared to others', body parts. In contrast, RBD patients did not show such an advantage for self body parts. Moreover, they were more impaired than LBD patients and normal subjects when visually matching their own body parts, whereas this difference was not evident in performing the task with other people's body parts. RBD patients' performance for the other stimulus categories (face, body, object), although worse than LBD patients' and normal subjects' performance, was comparable across categories. These findings suggest that the right hemisphere may be involved in the recognition of self body parts, through a fronto-parietal network.