Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Emiliano Ricciardi
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (11): 2342–2356.
Published: 01 October 2021
FIGURES
| View All (12)
Abstract
View article
PDF
Emotion self-regulation relies both on cognitive and behavioral strategies implemented to modulate the subjective experience and/or the behavioral expression of a given emotion. Although it is known that a network encompassing fronto-cingulate and parietal brain areas is engaged during successful emotion regulation, the functional mechanisms underlying failures in emotion suppression (ES) are still unclear. In order to investigate this issue, we analyzed video and high-density EEG recordings of 20 healthy adult participants during an ES and a free expression task performed on two consecutive days. Changes in facial expression during ES, but not free expression, were preceded by local increases in sleep-like activity (1–4 Hz) in brain areas responsible for emotional suppression, including bilateral anterior insula and anterior cingulate cortex, and in right middle/inferior frontal gyrus ( p < .05, corrected). Moreover, shorter sleep duration the night before the ES experiment correlated with the number of behavioral errors ( p = .03) and tended to be associated with higher frontal sleep-like activity during ES failures ( p = .09). These results indicate that local sleep-like activity may represent the cause of ES failures in humans and may offer a functional explanation for previous observations linking lack of sleep, changes in frontal activity, and emotional dysregulation.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (8): 1911–1920.
Published: 01 August 2011
FIGURES
| View All (4)
Abstract
View article
PDF
We designed an fMRI experiment comparing perception of human faces and robotic faces producing emotional expressions. The purpose of our experiment was to investigate engagement of different parts of the social brain by viewing these animate and inanimate agents. Both human and robotic face expressions evoked activity in face-responsive regions in the fusiform gyrus and STS and in the putative human mirror neuron system. These results suggest that these areas mediate perception of agency, independently of whether the agents are living or not. By contrast, the human faces evoked stronger activity than did robotic faces in the medial pFC and the anterior temporal cortex—areas associated with the representation of others' mental states (theory of mind), whereas robotic faces evoked stronger activity in areas associated with perception of objects and mechanical movements. Our data demonstrate that the representation of the distinction between animate and inanimate agents involves areas that participate in attribution of mental stance.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (7): 1342–1353.
Published: 01 July 2008
Abstract
View article
PDF
Previously, we demonstrated that enhancing cholinergic activity during a working memory (WM) task improves performance and reduces blood flow in the right anterior middle/superior frontal cortex, an area known to be important for WM. The purpose of this study was to evaluate the interaction between WM task demands and cholinergic enhancement on neural responses in the prefrontal cortex. Regional cerebral blood flow (rCBF) was measured using H 2 15 O and positron emission tomography, as 10 young healthy volunteers performed a parametrically varied match-to-sample WM for faces task. For each item, a picture of a face was presented, followed by a delay (1, 6, 11, or 16 sec), then by the presentation of two faces. Subjects were instructed to identify which face they previously had seen. For control items, nonsense pictures were presented in the same spatial and temporal manner. All conditions were performed during an intravenous infusion of saline and physostigmine (1 mg/hr). Subjects were blind to the substance being infused. Reaction time increased significantly with WM delay, and physostigmine decreased reaction time across delay conditions. Significant task-related rCBF increases during saline infusion were seen in superior frontal, middle frontal, and inferior frontal regions, and the response magnitudes in the regions increased systematically with task difficulty. In all of these prefrontal regions, physostigmine administration significantly reduced rCBF during task, particularly at longer task delays, so that no correlation between task delay and rCBF was observed. In the ventral visual cortex, physostigmine increased rCBF at longer task delays in medial regions, and decreased rCBF over delay conditions in lateral cortical areas. These results indicate that, during cholinergic potentiation, brain activity in prefrontal regions is not modulated by increases in WM task demands, and lends further support to the hypothesis that cholinergic modulation enhances visual processing, making the task easier to perform, and thus, compensate for the need to recruit prefrontal cortical regions as task demands increase.