Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-5 of 5
Eric H. Schumacher
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2022) 34 (5): 877–896.
Published: 31 March 2022
FIGURES
| View All (6)
Abstract
View article
PDF
Task processing (e.g., the preparation and execution of responses) and task representation (e.g., the activation and maintenance of stimulus–response and context information) are two facets of cognitive control supported by lateral frontal cortex (LFC). However, the mechanistic overlap (or distinction) between these two facets is unknown. We explored this by combining a complex task mapping with a precueing procedure. Participants made match/nonmatch judgments on pairs of stimuli during fMRI recording. Precues on each trial gave variable amounts of information to the participant in anticipation of the stimulus. Our results demonstrated that regions throughout LFC were more active at the stimulus (when responses could be executed) than at the cue (when they could only be prepared), indicating that they supported execution of the task agnostic to the specific task representation. A subset of regions in the left caudal LFC showed increased activity with more cue information at the cue and the reverse at the stimulus, suggesting their involvement in reducing uncertainty within the task representation. These results suggest that one component of task processing is preparing and executing the task according to the relevant representation, confined to left caudal LFC, whereas nonrepresentational functions that occur primarily during execution are supported by different regions throughout the rest of LFC. We further conducted an exploratory investigation of connectivity between the two groups of regions in this study and their potential relationship to the frontoparietal and cingulo-opercular networks. Regions with both patterns of activity appear to be part of the frontoparietal network.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2003) 15 (8): 1077–1079.
Published: 15 November 2003
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2003) 15 (8): 1111–1121.
Published: 15 November 2003
Abstract
View article
PDF
Response selection is the mental process of choosing representations for appropriate motor behaviors given particular environmental stimuli and one's current task situation and goals. Many cognitive theories of response selection postulate a unitary process. That is, one central response-selection mechanism chooses appropriate responses in most, if not all, task situations. However, neuroscience research shows that neural processing is often localized based on the type of information processed. Our current experiments investigate whether response selection is unitary or stimulus specific by manipulating response-selection difficulty in two functional magnetic resonance imaging experiments using spatial and nonspatial stimuli. The same participants were used in both experiments. We found spatial response selection involves the right prefrontal cortex, the bilateral premotor cortex, and the dorsal parietal cortical regions (precuneus and superior parietal lobule). Nonspatial response selection, conversely, involves the left prefrontal cortex and the more ventral posterior cortical regions (left middle temporal gyrus, left inferior parietal lobule, and right extrastriate cortex). Our brain activation data suggest a cognitive model for response selection in which different brain networks mediate the choice of appropriate responses for different types of stimuli. This model is consistent with behavioral research suggesting that responseselection processing may be more flexible and adaptive than originally proposed.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1997) 9 (4): 462–475.
Published: 01 July 1997
Abstract
View article
PDF
We report an experiment that assesses the effect of variations in memory load on brain activations that mediate verbal working memory. The paradigm that forms the basis of this experiment is the “ n -back” task in which subjects must decide for each letter in a series whether it matches the one presented n items back in the series. This task is of interest because it recruits processes involved in both the storage and manipulation of information in working memory. Variations in task difficulty were accomplished by varying the value of n . As n increased, subjects showed poorer behavioral performance as well as monotonically increasing magnitudes of brain activation in a large number of sites that together have been identified with verbal working-memory processes. By contrast, there was no reliable increase in activation in sites that are unrelated to working memory. These results validate the use of parametric manipulation of task variables in neuroimaging research, and they converge with the subtraction paradigm used most often in neuroimaging. In addition, the data support a model of working memory that includes both storage and executive processes that recruit a network of brain areas, all of which are involved in task performance.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1995) 7 (3): 337–356.
Published: 01 July 1995
Abstract
View article
PDF
We used positron emission tomography (PET) to answer the following question: Is working memory a unitary storage system, or does it instead include different storage buffers for different kinds of information? In Experiment 1, PET measures were taken while subjects engaged in either a spatial-memory task (retain the position of three dots for 3 sec) or an object-memory task (retain the identity of two objects for 3 sec). The results manifested a striking double dissociation, as the spatial task activated only right-hemisphere regions, whereas the object task activated primarily left-hemisphere regions. The spatial (right-hemisphere) regions included occipital, parietal, and prefrontal areas, while the object (left-hemisphere) regions included inferotemporal and parietal areas. Experiment 2 was similar to Experiment 1 except that the stimuli and trial events were identical for the spatial and object tasks; whether spatial or object memory was required was manipulated by instructions. The PET results once more showed a double dissociation, as the spatial task activated primarily right-hemisphere regions (again including occipital, parietal and prefrontal areas), whereas the object task activated only left-hemisphere regions (again including inferotemporal and parietal areas). Experiment 3 was a strictly behavioral study, which produced another double dissociation. It used the same tasks as Experiment 2, and showed that a variation in spatial similarity affected performance in the spatial but not the object task, whereas a variation in shape similarity affected performance in the object but not the spatial task. Taken together, the results of the three experiments clearly imply that different working-memory buffers are used for storing spatial and object information.