Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Eva Dittinger
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (10): 2093–2108.
Published: 01 September 2021
FIGURES
| View All (6)
Abstract
View article
PDF
The learning of new words is a challenge that accompanies human beings throughout the entire life span. Although the main electrophysiological markers of word learning have already been described, little is known about the performance-dependent neural machinery underlying this exceptional human faculty. Furthermore, it is currently unknown how word learning abilities are related to verbal memory capacity, auditory attention functions, phonetic discrimination skills, and musicality. Accordingly, we used EEG and examined 40 individuals, who were assigned to two groups (low [LPs] and high performers [HPs]) based on a median split of word learning performance, while they completed a phonetic-based word learning task. Furthermore, we collected behavioral data during an attentive listening and a phonetic discrimination task with the same stimuli to address relationships between auditory attention and phonetic discrimination skills, word learning performance, and musicality. The phonetic-based word learning task, which also included a nonlearning control condition, was sensitive enough to segregate learning-specific and unspecific N200/N400 manifestations along the anterior–posterior topographical axis. Notably, HPs exhibited enhanced verbal memory capacity and we also revealed a performance-dependent spatial N400 pattern, with maximal amplitudes at posterior electrodes in HPs and central maxima in LPs. Furthermore, phonetic-based word learning performance correlated with verbal memory capacity and phonetic discrimination skills, whereas the latter was related to musicality. This experimental approach clearly highlights the multifaceted dimensions of phonetic-based word learning and is helpful to disentangle learning-specific and unspecific ERPs.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (4): 662–682.
Published: 01 April 2021
FIGURES
| View All (7)
Abstract
View article
PDF
Previous studies evidenced transfer effects from professional music training to novel word learning. However, it is unclear whether such an advantage is driven by cascading, bottom–up effects from better auditory perception to semantic processing or by top–down influences from cognitive functions on perception. Moreover, the long-term effects of novel word learning remain an open issue. To address these questions, we used a word learning design, with four different sets of novel words, and we neutralized the potential perceptive and associative learning advantages in musicians. Under such conditions, we did not observe any advantage in musicians on the day of learning (Day 1 [D1]), at neither a behavioral nor an electrophysiological level; this suggests that the previously reported advantages in musicians are likely to be related to bottom–up processes. Nevertheless, 1 month later (Day 30 [D30]) and for all types of novel words, the error increase from D1 to D30 was lower in musicians compared to nonmusicians. In addition, for the set of words that were perceptually difficult to discriminate, only musicians showed typical N400 effects over parietal sites on D30. These results demonstrate that music training improved long-term memory and that transfer effects from music training to word learning (i.e., semantic levels of speech processing) benefit from reinforced (long-term) memory functions. Finally, these findings highlight the positive impact of music training on the acquisition of foreign languages.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (10): 1584–1602.
Published: 01 October 2016
FIGURES
| View All (7)
Abstract
View article
PDF
On the basis of previous results showing that music training positively influences different aspects of speech perception and cognition, the aim of this series of experiments was to test the hypothesis that adult professional musicians would learn the meaning of novel words through picture–word associations more efficiently than controls without music training (i.e., fewer errors and faster RTs). We also expected musicians to show faster changes in brain electrical activity than controls, in particular regarding the N400 component that develops with word learning. In line with these hypotheses, musicians outperformed controls in the most difficult semantic task. Moreover, although a frontally distributed N400 component developed in both groups of participants after only a few minutes of novel word learning, in musicians this frontal distribution rapidly shifted to parietal scalp sites, as typically found for the N400 elicited by known words. Finally, musicians showed evidence for better long-term memory for novel words 5 months after the main experimental session. Results are discussed in terms of cascading effects from enhanced perception to memory as well as in terms of multifaceted improvements of cognitive processing due to music training. To our knowledge, this is the first report showing that music training influences semantic aspects of language processing in adults. These results open new perspectives for education in showing that early music training can facilitate later foreign language learning. Moreover, the design used in the present experiment can help to specify the stages of word learning that are impaired in children and adults with word learning difficulties.