Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-5 of 5
F.-Xavier Alario
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (11): 2131–2144.
Published: 01 November 2020
FIGURES
| View All (4)
Abstract
View articletitled, On the Boundaries between Decision and Action: Effector-selective Lateralization of Beta-frequency Power Is Modulated by the Lexical Frequency of Printed Words
View
PDF
for article titled, On the Boundaries between Decision and Action: Effector-selective Lateralization of Beta-frequency Power Is Modulated by the Lexical Frequency of Printed Words
Current computational and neuroscientific models of decision-making posit a discrete, serial processing distinction between upstream decisional stages and downstream processes of motor-response implementation. We investigated this framework in the context of two-alternative forced-choice tasks on linguistic stimuli, words and pseudowords. In two experiments, we assessed the impact of lexical frequency and action semantics on two effector-selective EEG indexes of motor-response activation: the lateralized readiness potential and the lateralization of beta-frequency power. This allowed us to track potentially continuous streams of processing progressively mapping the evaluation of linguistic stimuli onto corresponding response channels. Whereas action semantics showed no influence on EEG indexes of motor-response activation, lexical frequency affected the lateralization of response-locked beta-frequency power. We argue that these observations point toward a continuity between linguistic processing of word input stimuli and implementation of corresponding choice in terms of motor behavior. This interpretation challenges the commonly held assumption of a discrete processing distinction between decisional and motor-response processes in the context of decisions based on symbolic stimuli.
Journal Articles
Tracking Keystroke Sequences at the Cortical Level Reveals the Dynamics of Serial Order Production
FreePublisher: Journals Gateway
Journal of Cognitive Neuroscience (2019) 31 (7): 1030–1043.
Published: 01 July 2019
FIGURES
| View All (5)
Abstract
View articletitled, Tracking Keystroke Sequences at the Cortical Level Reveals the Dynamics of Serial Order Production
View
PDF
for article titled, Tracking Keystroke Sequences at the Cortical Level Reveals the Dynamics of Serial Order Production
Response selection is often studied by examining single responses, although most actions are performed within an overarching sequence. Understanding processes that order and execute items in a sequence is thus essential to give a complete picture of response selection. In this study, we investigate response selection by comparing single responses and response sequences as well as unimanual and bimanual sequences. We recorded EEG while participants were typing one- or two-keystroke sequences. Irrespective of stimulus modality (visual or auditory), response-locked analysis revealed distinct contralateral and ipsilateral components previously associated with activation and inhibition of alternative responses. Unimanual sequences exhibited a similar activation/inhibition pattern as single responses, but with the activation component of the pattern expressed more strongly, reflecting the fact that the hand will be used for two strokes. In contrast, bimanual sequences were associated with successive activation of each of the corresponding motor cortices controlling each keystroke and no traceable inhibitory component. In short, the activation component of the two-keystroke sequence EEG pattern can be understood from the addition of activation components of single-stroke sequences; the inhibition of the hand not being used is only evidenced when that hand is not planned for the next stroke.
Journal Articles
Cortical Dynamics of Semantic Priming and Interference during Word Production: An Intracerebral Study
UnavailablePublisher: Journals Gateway
Journal of Cognitive Neuroscience (2019) 31 (7): 978–1001.
Published: 01 July 2019
FIGURES
| View All (8)
Abstract
View articletitled, Cortical Dynamics of Semantic Priming and Interference during Word Production: An Intracerebral Study
View
PDF
for article titled, Cortical Dynamics of Semantic Priming and Interference during Word Production: An Intracerebral Study
Language production requires that semantic representations are mapped to lexical representations on the basis of the ongoing context to select the appropriate words. This mapping is thought to generate two opposing phenomena, “semantic priming,” where multiple word candidates are activated, and “interference,” where these word activities are differentiated to make a goal-relevant selection. In previous neuroimaging and neurophysiological research, priming and interference have been associated to activity in regions of a left frontotemporal network. Most of such studies relied on recordings that either have high temporal or high spatial resolution, but not both. Here, we employed intracerebral EEG techniques to explore with both high resolutions, the neural activity associated with these phenomena. The data came from nine epileptic patients who were stereotactically implanted for presurgical diagnostics. They performed a cyclic picture-naming task contrasting semantically homogeneous and heterogeneous contexts. Of the 84 brain regions sampled, 39 showed task-evoked activity that was significant and consistent across two patients or more. In nine of these regions, activity was significantly modulated by the semantic manipulation. It was reduced for semantically homogeneous contexts (i.e., priming) in eight of these regions, located in the temporal ventral pathway as well as frontal areas. Conversely, it was increased only in the pre-SMA, notably at an early poststimulus temporal window (200–300 msec) and a preresponse temporal window (700–800 msec). These temporal effects respectively suggest the pre-SMA's role in initial conflict detection (e.g., increased response caution) and in preresponse control. Such roles of the pre-SMA are traditional from a history of neural evidence in simple perceptual tasks, yet are also consistent with recent cognitive lexicosemantic theories that highlight top–down processes in language production. Finally, although no significant semantic modulation was found in the ACC, future intracerebral EEG work should continue to inspect ACC with the pre-SMA.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (11): 1620–1629.
Published: 01 November 2018
FIGURES
Abstract
View articletitled, The Scope of Planning Serial Actions during Typing
View
PDF
for article titled, The Scope of Planning Serial Actions during Typing
Human activities consisting of multiple component actions require the generation of ordered sequences. This study investigated the scope of response planning in highly serial task, typing, by means of ERPs indexing motor response preparation. Specifically, we compared motor-related ERPs yielded by words typed using a single hand against words that had all keystrokes typed with a single hand, except for a deviant one, typed with the opposite hand. The deviant keystroke occurred either early in the typed sequence, corresponding to the second or third letters, or late, corresponding to the penultimate or last letter. Motor-related ERPs detected before response onset were affected only by deviant keystrokes located at the beginning of the sequence, whereas deviant keystrokes located at the end yielded ERPs that were undistinguishable from unimanual responses. These results impose some constraints on the notion of parallel processing of component actions.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (6): 1419–1436.
Published: 01 June 2011
FIGURES
| View All (5)
Abstract
View articletitled, General-Purpose Monitoring during Speech Production
View
PDF
for article titled, General-Purpose Monitoring during Speech Production
The concept of “monitoring” refers to our ability to control our actions on-line. Monitoring involved in speech production is often described in psycholinguistic models as an inherent part of the language system. We probed the specificity of speech monitoring in two psycholinguistic experiments where electroencephalographic activities were recorded. Our focus was on a component previously reported in nonlinguistic manual tasks and interpreted as a marker of monitoring processes. The error negativity (Ne, or error-related negativity), thought to originate in medial frontal areas, peaks shortly after erroneous responses. A component of seemingly comparable properties has been reported, after errors, in tasks requiring access to linguistic knowledge (e.g., speech production), compatible with a generic error-detection process. However, in contrast to its original name, advanced processing methods later revealed that this component is also present after correct responses in visuomotor tasks. Here, we reported the observation of the same negativity after correct responses across output modalities (manual and vocal responses). This indicates that, in language production too, the Ne reflects on-line response monitoring rather than error detection specifically. Furthermore, the temporal properties of the Ne suggest that this monitoring mechanism is engaged before any auditory feedback. The convergence of our findings with those obtained with nonlinguistic tasks suggests that at least part of the monitoring involved in speech production is subtended by a general-purpose mechanism.