Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-6 of 6
Fabienne Collette
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (8): 1900–1910.
Published: 01 August 2011
FIGURES
Abstract
View article
PDF
The solution of a problem left unresolved in the evening can sometimes pop into mind as a sudden insight after a night of sleep in the following morning. Although favorable effects of sleep on insightful behavior have been experimentally confirmed, the neural mechanisms determining this delayed insight remain unknown. Here, using fMRI, we characterize the neural precursors of delayed insight in the number reduction task (NRT), in which a hidden task structure can be learned implicitly, but can also be recognized explicitly in an insightful process, allowing immediate qualitative improvement in task performance. Normal volunteers practiced the NRT during two fMRI sessions (training and retest), taking place 12 hours apart after a night of sleep. After this delay, half of the subjects gained insight into the hidden task structure (“solvers,” S), whereas the other half did not (“nonsolvers,” NS). Already at training, solvers and nonsolvers differed in their cerebral responses associated with implicit learning. In future solvers, responses were observed in the superior frontal sulcus, posterior parietal cortex, and the insula, three areas mediating controlled processes and supporting early learning and novice performance. In contrast, implicit learning was related to significant responses in the hippocampus in nonsolvers. Moreover, the hippocampus was functionally coupled with the basal ganglia in nonsolvers and with the superior frontal sulcus in solvers, thus potentially biasing participants' strategy towards implicit or controlled processes of memory encoding, respectively. Furthermore, in solvers but not in nonsolvers, response patterns were further transformed overnight, with enhanced responses in ventral medial prefrontal cortex, an area previously implicated in the consolidation of declarative memory. During retest in solvers, before they gain insight into the hidden rule, significant responses were observed in the same medial prefrontal area. After insight, a distributed set of parietal and frontal areas is recruited among which information concerning the hidden rule can be shared in a so-called global workspace.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (1): 26–40.
Published: 01 January 2011
FIGURES
| View All (6)
Abstract
View article
PDF
Memory is constructive in nature so that it may sometimes lead to the retrieval of distorted or illusory information. Sleep facilitates accurate declarative memory consolidation but might also promote such memory distortions. We examined the influence of sleep and lack of sleep on the cerebral correlates of accurate and false recollections using fMRI. After encoding lists of semantically related word associates, half of the participants were allowed to sleep, whereas the others were totally sleep deprived on the first postencoding night. During a subsequent retest fMRI session taking place 3 days later, participants made recognition memory judgments about the previously studied associates, critical theme words (which had not been previously presented during encoding), and new words unrelated to the studied items. Sleep, relative to sleep deprivation, enhanced accurate and false recollections. No significant difference was observed in brain responses to false or illusory recollection between sleep and sleep deprivation conditions. However, after sleep but not after sleep deprivation (exclusive masking), accurate and illusory recollections were both associated with responses in the hippocampus and retrosplenial cortex. The data suggest that sleep does not selectively enhance illusory memories but rather tends to promote systems-level consolidation in hippocampo-neocortical circuits of memories subsequently associated with both accurate and illusory recollections. We further observed that during encoding, hippocampal responses were selectively larger for items subsequently accurately retrieved than for material leading to illusory memories. The data indicate that the early organization of memory during encoding is a major factor influencing subsequent production of accurate or false memories.
Journal Articles
Steve Majerus, Arnaud D'Argembeau, Trecy Martinez Perez, Sanaâ Belayachi, Martial Van der Linden ...
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (11): 2570–2593.
Published: 01 November 2010
FIGURES
| View All (5)
Abstract
View article
PDF
Although many neuroimaging studies have considered verbal and visual short-term memory (STM) as relying on neurally segregated short-term buffer systems, the present study explored the existence of shared neural correlates supporting verbal and visual STM. We hypothesized that networks involved in attentional and executive processes, as well as networks involved in serial order processing, underlie STM for both verbal and visual list information, with neural specificity restricted to sensory areas involved in processing the specific items to be retained. Participants were presented sequences of nonwords or unfamiliar faces, and were instructed to maintain and recognize order or item information. For encoding and retrieval phases, null conjunction analysis revealed an identical fronto-parieto-cerebellar network comprising the left intraparietal sulcus, bilateral dorsolateral prefrontal cortex, and the bilateral cerebellum, irrespective of information type and modality. A network centered around the right intraparietal sulcus supported STM for order information, in both verbal and visual modalities. Modality-specific effects were observed in left superior temporal and mid-fusiform areas associated with phonological and orthographic processing during the verbal STM tasks, and in right hippocampal and fusiform face processing areas during the visual STM tasks, wherein these modality effects were most pronounced when storing item information. The present results suggest that STM emerges from the deployment of modality-independent attentional and serial ordering processes toward sensory networks underlying the processing and storage of modality-specific item information.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (8): 1701–1713.
Published: 01 August 2010
FIGURES
Abstract
View article
PDF
Episodic future thinking allows humans to mentally simulate virtually infinite future possibilities, yet this device is fundamentally goal-directed and should not be equated with fantasizing or wishful thinking. The purpose of this fMRI study was to investigate the neural basis of such goal-directed processing during future-event simulation. Participants were scanned while they imagined future events that were related to their personal goals (personal future events) and future events that were plausible but unrelated to their personal goals (nonpersonal future events). Results showed that imaging personal future events elicited stronger activation in ventral medial prefrontal cortex (MPFC) and posterior cingulate cortex (PCC) compared to imaging nonpersonal future events. Moreover, these brain activations overlapped with activations elicited by a second task that assessed semantic self-knowledge (i.e., making judgments on one's own personality traits), suggesting that ventral MPFC and PCC mediate self-referential processing across different functional domains. It is suggested that these brain regions may support a collection of processes that evaluate, code, and contextualize the relevance of mental representations with regard to personal goals. The implications of these findings for the understanding of the function instantiated by the default network of the brain are also discussed.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (6): 935–944.
Published: 01 June 2007
Abstract
View article
PDF
The medial prefrontal cortex (MPFC) appears to play a prominent role in two fundamental aspects of social cognition, that is, self-referential processing and perspective taking. However, it is currently unclear whether the same or different regions of the MPFC mediate these two interdependent processes. This functional magnetic resonance imaging study sought to clarify the issue by manipulating both dimensions in a factorial design. Participants judged the extent to which trait adjectives described their own personality (e.g., “Are you sociable?”) or the personality of a close friend (e.g., “Is Caroline sociable?”) and were also asked to put themselves in the place of their friend (i.e., to take a third-person perspective) and estimate how this person would judge the adjectives, with the target of the judgments again being either the self (e.g., “According to Caroline, are you sociable?”) or the other person (e.g., “According to Caroline, is she sociable?”). We found that self-referential processing (i.e., judgments targeting the self vs. the other person) yielded activation in the ventral and dorsal anterior MPFC, whereas perspective taking (i.e., adopting the other person's perspective, rather than one's own, when making judgments) resulted in activation in the posterior dorsal MPFC; the interaction between the two dimensions yielded activation in the left dorsal MPFC. These findings show that self-referential processing and perspective taking recruit distinct regions of the MPFC and suggest that the left dorsal MPFC may be involved in decoupling one's own from other people's perspectives on the self.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (4): 671–683.
Published: 01 April 2007
Abstract
View article
PDF
We aimed at investigating social disability and its cerebral correlates in frontotemporal dementia (FTD). To do so, we contrasted answers of patients with early-stage FTD and of their relatives on personality trait judgment and on behavior prediction in social and emotional situations. Such contrasts were compared to control contrasts calculated with answers of matched controls tested with their relatives. In addition, brain metabolism was measured in patients with positron emission tomography and the [ 18 F]fluorodeoxyglucose method. Patients turned out to be as accurate as controls in describing their relative's personality, but they failed to predict their relative's behavior in social and emotional circumstances. Concerning the self, patients were impaired both in current personality assessment and in prediction of their own behavior. Those two self-evaluation measures did not correlate. Only patients' anosognosia for social behavioral disability was found to be related to decreased metabolic activity in the left temporal pole. Such results suggest that anosognosia for social disability in FTD originates in impaired processing of emotional autobiographical information, leading to a self-representation that does not match current behavior. Moreover, we propose that perspective-taking disability participates in anosognosia, preventing patients from correcting their inaccurate self-representation based on their relative's perspective.