Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Federico Giove
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2025) 37 (1): 210–226.
Published: 02 January 2025
FIGURES
| View All (9)
Abstract
View articletitled, Changes in Brain Functional Connectivity Underlying the Space–Number Association
View
PDF
for article titled, Changes in Brain Functional Connectivity Underlying the Space–Number Association
Whether small number magnitudes are inherently represented as lying to the left of larger ones, the space–number association (SNA), is an important issue in mathematical cognition. In this fMRI study, we used a go/no-go implicit association task to investigate the brain activity and functional connectivity underlying the SNA. Arabic digits lower or higher than 5 and left- or right-pointing arrows were alternated as central targets. In a single-code task condition, participants responded to a specific number magnitude and to all arrows or to a specific arrow direction and to all number magnitudes. In a joint-code (JC) condition, responses were provided after congruent, for example, “go when a number is lower than 5 or an arrow points left,” or incongruent, for example, “go when a number is lower than 5 or an arrow points right,” SNAs. The SNA was only found in the JC condition, where responses were faster with congruent instructions. Analyses of fMRI functional connectivity showed that the SNA was matched with enhanced excitatory inputs from ACC, the left TPJ, and the left inferior frontal gyrus to the left and right intraparietal sulcus (IPS). Incongruent JC trials were associated with enhanced excitatory modulation from ACC to the left and right IPS. These results show that the SNA is associated with enhanced activation of top–down brain control and changes in the functional interaction between the left and right IPS. We conclude that the SNA does not depend on an inherent and bottom–up spatial coding of number magnitudes.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2022) 34 (12): 2256–2274.
Published: 01 November 2022
FIGURES
| View All (6)
Abstract
View articletitled, Temporal Organization of Episodic and Experience-near Semantic Autobiographical Memories: Neural Correlates and Context-dependent Connectivity
View
PDF
for article titled, Temporal Organization of Episodic and Experience-near Semantic Autobiographical Memories: Neural Correlates and Context-dependent Connectivity
Autobiographical memory includes a representation of personal life events with a unique spatiotemporal context (episodic autobiographical memory) and factual self-knowledge (personal semantics). Whereas “experience-far” personal semantics have undergone complete abstraction, “experience-near” personal semantics are still linked to a spatiotemporal context. The representation of one's own past involves an autobiographical knowledge base, in the form of a personal timeline, along which autobiographical information is temporally organized into different lifetime periods. Commonalities and differences between brain networks supporting this temporal organization for autobiographical information with different contextual specificity, however, have not been investigated to date. Here, we used task-based fMRI to assess neural substrates of temporal ordering along the personal timeline for real autobiographical episodic and experience-near personal semantic memories. Within a distributed network, the left calcarine cortex was more strongly activated for episodic autobiographical memory than personal semantics, whereas the left ventromedial pFC and right posterior cingulate cortex (PCC), angular gyrus (AG), and anterior middle temporal gyrus (aMTG) showed stronger activation for personal semantics than episodic autobiographical memory. Findings were confirmed by analyses in independently derived ROIs. Generalized psychophysiological interaction analyses between the same regions showed that, during personal semantics compared with episodic autobiographical memory, memory category modulated activity in the left PCC and right PCC, AG, and aMTG. Findings provide insights on how personal events and facts are represented in the timescale of years, suggesting that the temporal organization of autobiographical memory exploits properties of situation models developed within posteromedial, lateral parietal, and medial prefrontal regions.