Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Florent Lebon
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2024) 36 (2): 261–271.
Published: 01 February 2024
FIGURES
Abstract
View article
PDF
Action reading is thought to engage motor simulations, such as those involved during the generation of mental motor images. These simulations would yield modulations in activity of motor-related cortical regions and contribute to action language comprehension. To test these ideas, we measured corticospinal excitability during action reading, and reading comprehension ability, in individuals with normal and impaired imagery (i.e., phantasia and aphantasia, respectively). Thirty-four participants (17 phantasic and 17 aphantasic) were asked to read manual action sentences. By means of TMS, we triggered motor-evoked potentials in the target right index finger. Motor-evoked potential amplitude, a marker of corticospinal excitability, increased during action reading relative to rest for phantasic individuals, but not for aphantasic individuals. This result provides neurophysiological evidence that individuals living with aphantasia present a real neurophysiological deficit in motor system engagement during action reading. Furthermore, deep-level reading comprehension ability was impaired in individuals with aphantasia, who had difficulty selecting words that best fit the context of sentences. Altogether, these findings support the idea that motor simulations, along with the activation within the motor system, contribute to action language comprehension.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (2): 269–278.
Published: 01 February 2014
FIGURES
Abstract
View article
PDF
Previous studies have identified two inhibitory mechanisms that operate during action selection and preparation. One mechanism, competition resolution, is manifest in the inhibition of the nonselected response and attributed to competition between candidate actions. The second mechanism, impulse control, is manifest in the inhibition of the selected response and is presumably invoked to prevent premature response. To identify constraints on the operation of these two inhibitory mechanisms, we manipulated the effectors used for the response alternatives, measuring changes in corticospinal excitability with motor-evoked potentials to TMS. Inhibition of the selected response (impulse control) was independent of the task context, consistent with a model in which this form of inhibition is automatically triggered as part of response preparation. In contrast, inhibition of the nonselected response (competition resolution) was context-dependent. Inhibition of the nonselected response was observed when the response alternatives involved movements of the upper limbs but was absent when one response alternative involved an upper limb and the other involved a lower limb. Interestingly, competition resolution for pairs of upper limbs did not require homologous effectors, observed when a left index finger response was pitted with either a nonhomologous right index finger movement or a right arm movement. These results argue against models in which competition resolution is viewed as a generic or fully flexible process, as well as models based on strong anatomical constraints. Rather, they are consistent with models in which inhibition for action selection is constrained by the similarity between the potential responses, perhaps reflecting an experience-dependent mechanism sensitive to the past history of competitive interactions.