Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Florian Schmiedek
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (9): 2147–2158.
Published: 01 September 2011
FIGURES
| View All (5)
Abstract
View articletitled, Brain Areas Consistently Linked to Individual Differences in Perceptual Decision-making in Younger as well as Older Adults before and after Training
View
PDF
for article titled, Brain Areas Consistently Linked to Individual Differences in Perceptual Decision-making in Younger as well as Older Adults before and after Training
Perceptual decision-making performance depends on several cognitive and neural processes. Here, we fit Ratcliff's diffusion model to accuracy data and reaction-time distributions from one numerical and one verbal two-choice perceptual-decision task to deconstruct these performance measures into the rate of evidence accumulation (i.e., drift rate), response criterion setting (i.e., boundary separation), and peripheral aspects of performance (i.e., nondecision time). These theoretical processes are then related to individual differences in brain activation by means of multiple regression. The sample consisted of 24 younger and 15 older adults performing the task in fMRI before and after 100 daily 1-hr behavioral training sessions in a multitude of cognitive tasks. Results showed that individual differences in boundary separation were related to striatal activity, whereas differences in drift rate were related to activity in the inferior parietal lobe. These associations were not significantly modified by adult age or perceptual expertise. We conclude that the striatum is involved in regulating response thresholds, whereas the inferior parietal lobe might represent decision-making evidence related to letters and numbers.