Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-6 of 6
Florin Dolcos
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2022) 34 (1): 54–78.
Published: 01 December 2021
FIGURES
| View All (5)
Abstract
View article
PDF
Cooperation behaviors during social decision-making have been shown to be sensitive to manipulations of context. However, it remains unclear how aspects of context in dynamic social interactions, such as observed nonverbal behaviors, may modulate cooperation decisions and the associated neural mechanisms. In this study, participants responded to offers from proposers to split $10 in an Ultimatum Game following observation of proposer approach (friendly) or avoidance (nonfriendly) behaviors, displayed by dynamic whole-body animated avatars, or following a nonsocial interaction control condition. As expected, behavioral results showed that participants tended to have greater acceptance rates for unfair offers following observed nonverbal social interactions with proposers compared with control, suggesting an enhancing effect of social interactions on cooperative decisions. ERP results showed greater N1 and N2 responses at the beginning of social interaction conditions compared with control, and greater sustained and late positivity responses for observed approach and avoidance proposer behaviors compared with control. Event-related spectral perturbation (ERSP) results showed differential sensitivity within theta, alpha, and beta bands during observation of social interactions and offers that was associated with subsequent decision behaviors. Together, these results point to the impact of proposers' nonverbal behaviors on subsequent cooperation decisions at both behavioral and neural levels. The ERP and ERSP findings suggest modulated attention, monitoring, and processing of biological motion during the observed nonverbal social interactions, influencing the participants' responses to offers. These findings shed light on electrophysiological correlates of response to observed social interactions that predict subsequent social decisions.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (1): 167–186.
Published: 01 January 2020
FIGURES
| View All (8)
Abstract
View article
PDF
Despite evidence identifying the role of group membership in social cognition, the neural mechanisms associated with the perception and evaluation of nonverbal behaviors displayed by in-group versus out-group members remain unclear. Here, 42 white participants underwent electroencephalographic recording while observing social encounters involving dynamic displays of nonverbal behaviors by racial in-group and out-group avatar characters. Dynamic behaviors included approach and avoidance poses and expressions, followed by the participants' ratings of the avatars displaying them. Behaviorally, participants showed longer RTs when evaluating in-group approach behavior compared with other behaviors, possibly suggesting increased interest and attention devoted to processing positive social encounters with their in-group members. Analyses of ERPs revealed differential sensitivity of the N450 and late positivity components to social cues, with the former showing initial sensitivity to the presence of a humanoid avatar character at the beginning of social encounters and the latter showing sensitivity to dynamic nonverbal behaviors displayed by the avatars. Moreover, time–frequency analysis of electroencephalography data also identified suppression of beta-range power linked to the observation of dynamic nonverbal behaviors. Notably, the magnitude of these responses was modulated by the degree of behavioral racial in-group bias. This suggests that differential neural sensitivity to nonverbal cues while observing social encounters is associated with subsequent in-group bias manifested in the evaluation of such encounters. Collectively, these findings shed light on the mechanisms of racial in-group bias in social cognition and have implications for understanding factors related to successful interactions with individuals from diverse racial backgrounds.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (12): 2292–2305.
Published: 01 December 2012
FIGURES
| View All (5)
Abstract
View article
PDF
Effective social interactions require the ability to evaluate other people's actions and intentions, sometimes only on the basis of such subtle factors as body language, and these evaluative judgments may lead to powerful impressions. However, little is known about the impact of affective body language on evaluative responses in social settings and the associated neural correlates. This study investigated the neural correlates of observing social interactions in a business setting, in which whole-body dynamic stimuli displayed approach and avoidance behaviors that were preceded or not by a handshake and were followed by participants' ratings of these behaviors. First, approach was associated with more positive evaluations than avoidance behaviors, and a handshake preceding social interaction enhanced the positive impact of approach and diminished the negative impact of avoidance behavior on the evaluation of social interaction. Second, increased sensitivity to approach than to avoidance behavior in the amygdala and STS was linked to a positive evaluation of approach behavior and a positive impact of handshake. Third, linked to the positive effect of handshake on social evaluation, nucleus accumbens showed greater activity for Handshake than for No-handshake conditions. These findings shed light on the neural correlates of observing and evaluating nonverbal social interactions and on the role of handshake as a way of formal greeting.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (5): 1233–1252.
Published: 01 May 2012
FIGURES
| View All (5)
Abstract
View article
PDF
Traditionally, emotional stimuli have been thought to be automatically processed via a bottom–up automatic “capture of attention” mechanism. Recently, this view has been challenged by evidence that emotion processing depends on the availability of attentional resources. Although these two views are not mutually exclusive, direct evidence reconciling them is lacking. One limitation of previous investigations supporting the traditional or competing views is that they have not systematically investigated the impact of emotional charge of task-irrelevant distraction in conjunction with manipulations of attentional demands. Using event-related fMRI, we investigated the nature of emotion–cognition interactions in a perceptual discrimination task with emotional distraction by manipulating both the emotional charge of the distracting information and the demands of the main task. Our findings show that emotion processing is both automatic and modulated by attention, but emotion and attention were only found to interact when finer assessments of emotional charge (comparison of most vs. least emotional conditions) were considered along with an effective manipulation of processing load (high vs. low). The study also identified brain regions reflecting the detrimental impact of emotional distraction on performance as well as regions involved in coping with such distraction. Activity in the dorsomedial pFC and ventrolateral pFC was linked to a detrimental impact of emotional distraction, whereas the dorsal ACC and lateral occipital cortex were involved in helping with emotional distraction. These findings demonstrate that task-irrelevant emotion processing is subjective to both the emotional content of distraction and the level of attentional demand.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (7): 1152–1162.
Published: 01 July 2007
Abstract
View article
PDF
Regulatory focus theory [Higgins, E. T. Beyond pleasure and pain. American Psychologist, 52 , 1280–1300, 1997] postulates two social-cognitive motivational systems, the promotion and prevention systems, for self-regulation of goal pursuit. However, the neural substrates of promotion and prevention goal activation remain unclear. Drawing on several literatures, we hypothesized that priming promotion versus prevention goals would activate areas in the left versus right prefrontal cortex (PFC), respectively, and that activation in these areas would be correlated with individual differences in chronic regulatory focus. Sixteen participants underwent functional magnetic resonance imaging while engaged in a depth-of-processing task, during which they were exposed incidentally to their own promotion and prevention goals. Task-related cortical activation was consistent with previous studies. At the same time, incidental priming of promotion goals was associated with left orbital PFC activation, and activation in this area was stronger for individuals with a chronic promotion focus. Findings regarding prevention goal priming were not consistent with predictions. The data illustrate the centrality of self-regulation and personal goal pursuit within the multilayered process of social cognition.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2004) 16 (9): 1583–1594.
Published: 01 November 2004
Abstract
View article
PDF
Functional neuroimaging studies of episodic memory retrieval generally measure brain activity while participants remember items encountered in the laboratory (“controlled laboratory condition”) or events from their own life (“open autobiographical condition”). Differences in activation between these conditions may reflect differences in retrieval processes, memory remoteness, emotional content, retrieval success, self-referential processing, visual/spatial memory, and recollection. To clarify the nature of these differences, a functional MRI study was conducted using a novel “photo paradigm,” which allows greater control over the autobiographical condition, including a measure of retrieval accuracy. Undergraduate students took photos in specified campus locations (“controlled autobiographical condition”), viewed in the laboratory similar photos taken by other participants (controlled laboratory condition), and were then scanned while recognizing the two kinds of photos. Both conditions activated a common episodic memory network that included medial temporal and prefrontal regions. Compared with the controlled laboratory condition, the controlled autobiographical condition elicited greater activity in regions associated with self-referential processing (medial prefrontal cortex), visual/ spatial memory (visual and parahippocampal regions), and recollection (hippocampus). The photo paradigm provides a way of investigating the functional neuroanatomy of real-life episodic memory under rigorous experimental control.