Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Floris T. van Vugt
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (12): 1883–1901.
Published: 01 December 2018
FIGURES
| View All (5)
Abstract
View article
PDF
The relationship between neural activation during movement training and the plastic changes that survive beyond movement execution is not well understood. Here we ask whether the changes in resting-state functional connectivity observed following motor learning overlap with the brain networks that track movement error during training. Human participants learned to trace an arched trajectory using a computer mouse in an MRI scanner. Motor performance was quantified on each trial as the maximum distance from the prescribed arc. During learning, two brain networks were observed, one showing increased activations for larger movement error, comprising the cerebellum, parietal, visual, somatosensory, and cortical motor areas, and the other being more activated for movements with lower error, comprising the ventral putamen and the OFC. After learning, changes in brain connectivity at rest were found predominantly in areas that had shown increased activation for larger error during task, specifically the cerebellum and its connections with motor, visual, and somatosensory cortex. The findings indicate that, although both errors and accurate movements are important during the active stage of motor learning, the changes in brain activity observed at rest primarily reflect networks that process errors. This suggests that error-related networks are represented in the initial stages of motor memory formation.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (3): 290–306.
Published: 01 March 2018
FIGURES
| View All (9)
Abstract
View article
PDF
One of the puzzles of learning to talk or play a musical instrument is how we learn which movement produces a particular sound: an audiomotor map. Existing research has used mappings that are already well learned such as controlling a cursor using a computer mouse. By contrast, the acquisition of novel sensorimotor maps was studied by having participants learn arm movements to auditory targets. These sounds did not come from different directions but, like speech, were only distinguished by their frequencies. It is shown that learning involves forming not one but two maps: a point map connecting sensory targets with motor commands and an error map linking sensory errors to motor corrections. Learning a point map is possible even when targets never repeat. Thus, although participants make errors, there is no opportunity to correct them because the target is different on every trial, and therefore learning cannot be driven by error correction. Furthermore, when the opportunity for error correction is provided, it is seen that acquiring error correction is itself a learning process that changes over time and results in an error map. In principle, the error map could be derived from the point map, but instead, these two maps are independently acquired and jointly enable sensorimotor control and learning. A computational model shows that this dual encoding is optimal and simulations based on this architecture predict that learning the two maps results in performance improvements comparable with those observed empirically.