Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Francesca Ferri
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (9): 2171–2185.
Published: 01 September 2014
FIGURES
| View All (5)
Abstract
View article
PDF
Anticipating the sensorimotor consequences of an action for both self and other is fundamental for action coordination when individuals socially interact. Somatosensation constitutes an elementary component of social cognition and sensorimotor prediction, but its functions in active social behavior remain unclear. We hypothesized that the somatosensory system contributes to social haptic behavior as evidenced by specific anticipatory activation patterns when touching an animate target (human hand) compared with an inanimate target (fake hand). fMRI scanning was performed during a paradigm that allowed us to isolate the anticipatory representations of active interpersonal touch while controlling for nonsocial sensorimotor processes and possible confounds because of interpersonal relationships or socioemotional valence. Active interpersonal touch was studied both as skin-to-skin contact and as object-mediated touch. The results showed weaker deactivation in primary somatosensory cortex and medial pFC and stronger activation in cerebellum for the animate target, compared with the inanimate target, when intending to touch it with one's own hand. Differently, in anticipation of touching the human hand with an object, anterior inferior parietal lobule and lateral occipital-temporal cortex showed stronger activity. When actually touching a human hand with one's own hand, activation was stronger in medial pFC but weaker in primary somatosensory cortex. The findings provide new insight on the contribution of simulation and sensory prediction mechanisms to active social behavior. They also suggest that literally getting in touch with someone and touching someone by using an object might be approached by an agent as functionally distinct conditions.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (7): 1584–1595.
Published: 01 July 2012
FIGURES
| View All (4)
Abstract
View article
PDF
Neuroscientists and philosophers, among others, have long questioned the contribution of bodily experience to the constitution of self-consciousness. Contemporary research answers this question by focusing on the notions of sense of agency and/or sense of ownership. Recently, however, it has been proposed that the bodily self might also be rooted in bodily motor experience, that is, in the experience of oneself as instantiating a bodily structure that enables a specific range of actions. In the current fMRI study, we tested this hypothesis by making participants undergo a hand laterality judgment task, which is known to be solved by simulating a motor rotation of one's own hand. The stimulus to be judged was either the participant's own hand or the hand of a stranger. We used this task to investigate whether mental rotation of pictures depicting one's own hands leads to a different activation of the sensorimotor areas as compared with the mental rotation of pictures depicting another's hand. We revealed a neural network for the general representation of the bodily self encompassing the SMA and pre-SMA, the anterior insula, and the occipital cortex, bilaterally. Crucially, the representation of one's own dominant hand turned out to be primarily confined to the left premotor cortex. Our data seem to support the existence of a sense of bodily self encased within the sensorimotor system. We propose that such a sensorimotor representation of the bodily self might help us to differentiate our own body from that of others.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (7): 1808–1822.
Published: 01 July 2011
FIGURES
| View All (4)
Abstract
View article
PDF
Previous studies suggested that the observation of other individuals' somatosensory experiences also activates brain circuits processing one's own somatosensory experiences. However, it is unclear whether cortical regions involved with the elementary stages of touch processing are also involved in the automatic coding of the affective consequences of observed touch and to which extent they show overlapping activation for somatosensory experiences of self and others. In order to investigate these issues, in the present fMRI study, healthy participants either experienced touch or watched videos depicting other individuals' inanimate and animate/social touch experiences. Essentially, a distinction can be made between exteroceptive and interoceptive components of touch processing, involved with physical stimulus characteristics and internal feeling states, respectively. Consistent with this distinction, a specific negative modulation was found in the posterior insula by the mere visual perception of other individuals' social or affective cutaneous experiences, compared to neutral inanimate touch. On the other hand, activation in secondary somatosensory and posterior superior temporal regions, strongest for the most intense stimuli, seemed more dependent on the observed physical stimulus characteristics. In contrast to the detected vicarious activation in somatosensory regions, opposite activation patterns for the experience (positive modulation) and observation (negative modulation) of touch suggest that the posterior insula does not reflect a shared representation of self and others' experiences. Embedded in a distributed network of brain regions underpinning a sense of the bodily self, the posterior insula rather appears to differentiate between self and other conditions when affective experiences are implicated.