Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Frank E. Garcea
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (5): 752–769.
Published: 01 May 2018
FIGURES
Abstract
View articletitled, A Role for the Frontal Aslant Tract in Speech Planning: A Neurosurgical Case Study
View
PDF
for article titled, A Role for the Frontal Aslant Tract in Speech Planning: A Neurosurgical Case Study
Frontal and temporal white matter pathways play key roles in language processing, but the specific computations supported by different tracts remain a matter of study. A role in speech planning has been proposed for a recently described pathway, the frontal aslant tract (FAT), which connects the posterior inferior frontal gyrus to the pre-SMA. Here, we use longitudinal functional and structural MRI and behavioral testing to evaluate the behavioral consequences of a lesion to the left FAT that was incurred during surgical resection of a frontal glioma in a 60-year-old woman, Patient AF. The pattern of performance in AF is compared, using the same measures, with that in a 37-year-old individual who underwent a left anterior temporal resection and hippocampectomy (Patient AG). AF and AG were both cognitively intact preoperatively but exhibited specific and doubly dissociable behavioral deficits postoperatively: AF had dysfluent speech but no word finding difficulty, whereas AG had word finding difficulty but otherwise fluent speech. Probabilistic tractography showed that the left FAT was lesioned postoperatively in AF (but not AG) whereas the inferior longitudinal fasciculus was lesioned in AG (but not AF). Those structural changes were supported by corresponding changes in functional connectivity to the posterior inferior frontal gyrus: decreased functional connectivity postoperatively between the posterior inferior frontal gyrus and pre-SMA in AF (but not AG) and decreased functional connectivity between the posterior inferior frontal gyrus and the middle temporal gyrus in AG (but not AF). We suggest from these findings that the left FAT serves as a key communicative link between sentence planning and lexical access processes.
Journal Articles
Temporal Frequency Tuning Reveals Interactions between the Dorsal and Ventral Visual Streams
UnavailablePublisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (9): 1295–1302.
Published: 01 September 2016
FIGURES
Abstract
View articletitled, Temporal Frequency Tuning Reveals Interactions between the Dorsal and Ventral Visual Streams
View
PDF
for article titled, Temporal Frequency Tuning Reveals Interactions between the Dorsal and Ventral Visual Streams
Visual processing of complex objects is supported by the ventral visual pathway in the service of object identification and by the dorsal visual pathway in the service of object-directed reaching and grasping. Here, we address how these two streams interact during tool processing, by exploiting the known asymmetry in projections of subcortical magnocellular and parvocellular inputs to the dorsal and ventral streams. The ventral visual pathway receives both parvocellular and magnocellular input, whereas the dorsal visual pathway receives largely magnocellular input. We used fMRI to measure tool preferences in parietal cortex when the images were presented at either high or low temporal frequencies, exploiting the fact that parvocellular channels project principally to the ventral but not dorsal visual pathway. We reason that regions of parietal cortex that exhibit tool preferences for stimuli presented at frequencies characteristic of the parvocellular pathway receive their inputs from the ventral stream. We found that the left inferior parietal lobule, in the vicinity of the supramarginal gyrus, exhibited tool preferences for images presented at low temporal frequencies, whereas superior and posterior parietal regions exhibited tool preferences for images present at high temporal frequencies. These data indicate that object identity, processed within the ventral stream, is communicated to the left inferior parietal lobule and may there combine with inputs from the dorsal visual pathway to allow for functionally appropriate object manipulation.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (6): 869–881.
Published: 01 June 2016
FIGURES
| View All (7)
Abstract
View articletitled, Multisensory Part-based Representations of Objects in Human Lateral Occipital Cortex
View
PDF
for article titled, Multisensory Part-based Representations of Objects in Human Lateral Occipital Cortex
The format of high-level object representations in temporal-occipital cortex is a fundamental and as yet unresolved issue. Here we use fMRI to show that human lateral occipital cortex (LOC) encodes novel 3-D objects in a multisensory and part-based format. We show that visual and haptic exploration of objects leads to similar patterns of neural activity in human LOC and that the shared variance between visually and haptically induced patterns of BOLD contrast in LOC reflects the part structure of the objects. We also show that linear classifiers trained on neural data from LOC on a subset of the objects successfully predict a novel object based on its component part structure. These data demonstrate a multisensory code for object representations in LOC that specifies the part structure of objects.