Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Fred W. Mast
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (5): 862–876.
Published: 01 May 2020
FIGURES
| View All (5)
Abstract
View article
PDF
The representation and processing of numerosity is a crucial cognitive capacity. Converging evidence points to the posterior parietal cortex (PPC) as primary “number” region. However, the exact role of the left and right PPC for different types of numerical and arithmetic tasks remains controversial. In this study, we used high-definition transcranial direct current stimulation (HD-tDCS) to further investigate the causal involvement of the PPC during approximative, nonsymbolic mental arithmetic. Eighteen healthy participants received three sessions of anodal HD-tDCS at 1-week intervals in counterbalanced order: left PPC, right PPC, and sham stimulation. Results showed an improved performance during online parietal HD-tDCS (vs. sham) for subtraction problems. Specifically, the general tendency to underestimate the results of subtraction problems (i.e., the “operational momentum effect”) was reduced during online parietal HD-tDCS. There was no difference between left and right stimulation. This study thus provides new evidence for a causal involvement of the left and right PPC for approximate nonsymbolic arithmetic and advances the promising use of noninvasive brain stimulation in increasing cognitive functions.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (3): 484–496.
Published: 01 March 2020
FIGURES
| View All (6)
Abstract
View article
PDF
There is growing evidence that vestibular information is not only involved in reflexive eye movements and the control of posture but it also plays an important role in higher order cognitive processes. Previous behavioral research has shown that concomitant vestibular stimuli influence performance in tasks that involve imagined self-rotations. These results suggest that imagined and perceived body rotations share common mechanisms. However, the nature and specificity of these effects remain largely unknown. Here, we investigated the neural mechanisms underlying this vestibulocognitive interaction. Participants ( n = 20) solved an imagined self-rotation task during caloric vestibular stimulation. We found robust main effects of caloric vestibular stimulation in the core region of the vestibular network, including the rolandic operculum and insula bilaterally, and of the cognitive task in parietal and frontal regions. Interestingly, we found an interaction of stimulation and task in the left inferior parietal lobe, suggesting that this region represents the modulation of imagined body rotations by vestibular input. This result provides evidence that the inferior parietal lobe plays a crucial role in the neural integration of mental and physical body rotation.