Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
G. Dehaene-Lambertz
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2004) 16 (8): 1375–1387.
Published: 01 October 2004
Abstract
View articletitled, Common Neural Basis for Phoneme Processing in Infants and Adults
View
PDF
for article titled, Common Neural Basis for Phoneme Processing in Infants and Adults
Investigating the degree of similarity between infants' and adults' representation of speech is critical to our understanding of infants' ability to acquire language. Phoneme perception plays a crucial role in language processing, and numerous behavioral studies have demonstrated similar capacities in infants and adults, but are these subserved by the same neural substrates or networks? In this article, we review event-related potential (ERP) results obtained in infants during phoneme discrimination tasks and compare them to results from the adult literature. The striking similarities observed both in behavior and ERPs between initial and mature stages suggest a continuity in processing and neural structure. We argue that infants have access at the beginning of life to phonemic representations, which are modified without training or implicit instruction, but by the statistical distributions of speech input in order to converge to the native phonemic categories.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2000) 12 (4): 635–647.
Published: 01 July 2000
Abstract
View articletitled, Electrophysiological Correlates of Phonological Processing: A Cross-linguistic Study
View
PDF
for article titled, Electrophysiological Correlates of Phonological Processing: A Cross-linguistic Study
It is well known that speech perception is deeply affected by the phoneme categories of the native language. Recent studies have found that phonotactics, i.e., constraints on the cooccurrence of phonemes within words, also have a considerable impact on speech perception routines. For example, Japanese does not allow (nonasal) coda consonants. When presented with stimuli that violate this constraint, as in / ebzo/, Japanese adults report that they hear a /u/ between consonants, i.e., /ebuzo/. We examine this phenomenon using event-related potentials (ERPs) on French and Japanese participants in order to study how and when the phonotactic properties of the native language affect speech perception routines. Trials using four similar precursor stimuli were presented followed by a test stimulus that was either identical or different depending on the presence or absence of an epenthetic vowel /u/ between two consonants (e.g., “ebuzo ebuzo ebuzo—ebzo”). Behavioral results confirm that Japanese, unlike French participants, are not able to discriminate between identical and deviant trials. In ERPs, three mismatch responses were recorded in French participants. These responses were either absent or significantly weaker for Japanese. In particular, a component similar in latency and topography to the mismatch negativity (MMN) was recorded for French, but not for Japanese participants. Our results suggest that the impact of phonotactics takes place early in speech processing and support models of speech perception, which postulate that the input signal is directly parsed into the native language phonological format. We speculate that such a fast computation of a phonological representation should facilitate lexical access, especially in degraded conditions.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2000) 12 (3): 449–460.
Published: 01 May 2000
Abstract
View articletitled, Cerebral Specialization for Speech and Non-Speech Stimuli in Infants
View
PDF
for article titled, Cerebral Specialization for Speech and Non-Speech Stimuli in Infants
Early cerebral specialization and lateralization for auditory processing in 4-month-old infants was studied by recording high-density evoked potentials to acoustical and phonetic changes in a series of repeated stimuli (either tones or syllables). Mismatch responses to these stimuli exhibit a distinct topography suggesting that different neural networks within the temporal lobe are involved in the perception and representation of the different features of an auditory stimulus. These data confirm that specialized modules are present within the auditory cortex very early in development. However, both for syllables and continuous tones, higher voltages were recorded over the left hemisphere than over the right with no significant interaction of hemisphere by type of stimuli. This suggests that there is no greater left hemisphere involvement in phonetic processing than in acoustic processing during the first months of life.