Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-4 of 4
G. R. Mangun
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2003) 15 (2): 157–172.
Published: 15 February 2003
Abstract
View article
PDF
The neural mechanisms and role of attention in the processing of visual form defined by luminance or motion cues were studied using magnetoencephalography. Subjects viewed bilateral stimuli composed of moving random dots and were instructed to covertly attend to either left or right hemifield stimuli in order to detect designated target stimuli that required a response. To generate form-from-motion (FFMo) stimuli, a subset of the dots could begin to move coherently to create the appearance of a simple form (e.g., square). In other blocks, to generate form-from-luminance (FFLu) stimuli that served as a control, a gray stimulus was presented superimposed on the randomly moving dots. Neuromagnetic responses were observed to both the FFLu and FFMo stimuli and localized to multiple visual cortical stages of analysis. Early activity in low-level visual cortical areas (striate/early extrastriate) did not differ for FFLu versus FFMo stimuli, nor as a function of spatial attention. Longer latency responses elicited by the FFLu stimuli were localized to the ventral-lateral occipital cortex (LO) and the inferior temporal cortex (IT). The FFMo stimuli also generated activity in the LO and IT, but only after first eliciting activity in the lateral occipital cortical region corresponding to MT/V5, resulting in a 50–60 msec delay in activity. All of these late responses (MT/V5, LO, and IT) were significantly modulated by spatial attention, being greatly attenuated for ignored FFLu and FFMo stimuli. These findings argue that processing of form in IT that is defined by motion requires a serial processing of information, first in the motion analysis pathway from V1 to MT/V5 and thereafter via the form analysis stream in the ventral visual pathway to IT.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2000) 12 (2): 357–359.
Published: 01 March 2000
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1998) 10 (4): 485–498.
Published: 01 July 1998
Abstract
View article
PDF
The neural mechanisms of hierarchical stimulus processing were investigated using a combined event-related potentials (ERPs) and positron emission tomography (PET) approach. Healthy subjects were tested under two conditions that involved selective or divided attention between local and global levels of hierarchical letter stimuli in order to determine whether and where hemispheric differences might exist in the processing of local versus global information. When attention was divided between global and local levels, the N2 component of the ERPs (260- to 360-msec latency) elicited by the target stimuli showed asymmetries in amplitude over the two hemispheres. The N2 to local targets was larger over the left hemisphere, but the N2 to global targets tended to be slightly larger over the right hemisphere. However, the shorter-latency, sensory-evoked P1 component (90- to 150-msec latency) was not different for global versus local targets under conditions of divided attention. In contrast, during selective attention to either global or local targets, asymmetries in the N2 component were not observed. But under selective attention conditions, the sensory-evoked P1 components in the extrastriate cortex were enlarged for global versus local attention. In- creased regional cerebral blood flow in the posterior fusiform gyrus bilaterally was observed in the PET data during selective attention to either global or local targets, but neither these nor the P1 component showed any tendency toward hemispheric difference for global versus local attention. Neither were there any activations observed in the parietal lobe during selective attention to global versus local targets. Together these data indicate that early sensory inputs are not modulated to gate global versus local information differentially into the two hemi- spheres. Rather, later stages of processing that may be asym- metrically organized in the left and right hemispheres operate in parallel to process global and local aspects of complex stimuli (i.e., the N2 effect of the ERPs). This pattern of results supports models proposing that spatial frequency analysis is only asymmetric at higher stages of perceptual processing and not at the earliest stages of visual cortical analysis.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1994) 6 (3): 267–275.
Published: 01 July 1994
Abstract
View article
PDF
Hemispheric specialization and subcortical processes in visual anention were investigated in callosotomy (split-brain) patients by measuring reaction times to lateralized stimuli in a spatial cuing paradigm. Cuing effects were obtained for targets presented to the right hemisphere (left visual hemifield) but not for those presented to the left hemisphere. These cuing effects were manifest as faster reaction times when the cue correctly indicated the location of the subsequent target (valid trials), as compared to trials in which the cue and target appeared in opposite hemifields (invalid trials). This pattern suggests that the right hemisphere allocated attention to cued locations in either visual hemifield, whereas the left hemisphere allocated attention predominantly to the right hemifield. This finding is consistent with a body of evidence from studies in patients with cortical lesions who display different attentional deficits for right versus left hemisphere damage. Because the present pattern occurs in patients whose cerebral hemispheres are separated at the cortical level, it suggests that right hemisphere attentional allocation to events in the ipsilateral visual half-field is mediated in part via intact subcortical systems.