Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-9 of 9
Geoffrey F. Woodman
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (6): 1129–1141.
Published: 01 May 2021
FIGURES
| View All (7)
Abstract
View article
PDF
Induced forgetting occurs when accessing an item in memory appears to harm memory representations of categorically related items. However, it is possible that the actual memory representations are unharmed. Instead, people may just change how they make decisions. Specifically, signal detection theory suggests this apparent forgetting may be due to participants shifting their decision criterion. Here, we used behavioral and electrophysiological measures to determine whether induced forgetting is truly due to changes in how items are represented or simply due to a shifting criterion. Participants' behavior and brain activity showed that induced forgetting was due to changes in the strength of the underlying representations, weighing against a criterion shift explanation of induced forgetting.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (3): 536–562.
Published: 01 March 2021
FIGURES
| View All (13)
Abstract
View article
PDF
Human alpha-band activity (8–12 Hz) has been proposed to index a variety of mechanisms during visual processing. Here, we distinguished between an account in which alpha suppression indexes selective attention versus an account in which it indexes subsequent working memory storage. We manipulated two aspects of the visual stimuli that perceptual attention is believed to mitigate before working memory storage: the potential interference from distractors and the size of the focus of attention. We found that the magnitude of alpha-band suppression tracked both of these aspects of the visual arrays. Thus, alpha-band activity after stimulus onset is clearly related to how the visual system deploys perceptual attention and appears to be distinct from mechanisms that store target representations in working memory.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (1): 146–157.
Published: 01 January 2021
FIGURES
| View All (7)
Abstract
View article
PDF
It is not definitely known how direct-current stimulation causes its long-lasting effects. Here, we tested the hypothesis that the long time course of transcranial direct-current stimulation (tDCS) is because of the electrical field increasing the plasticity of the brain tissue. If this is the case, then we should see tDCS effects when humans need to encode information into long-term memory, but not at other times. We tested this hypothesis by delivering tDCS to the ventral visual stream of human participants during different tasks (i.e., recognition memory vs. visual search) and at different times during a memory task. We found that tDCS improved memory encoding, and the neural correlates thereof, but not retrieval. We also found that tDCS did not change the efficiency of information processing during visual search for a certain target object, a task that does not require the formation of new connections in the brain but instead relies on attention and object recognition mechanisms. Thus, our findings support the hypothesis that direct-current stimulation modulates brain activity by changing the underlying plasticity of the tissue.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (3): 515–526.
Published: 01 March 2020
FIGURES
| View All (7)
Abstract
View article
PDF
Repetitive performance of single-feature (efficient or pop-out) visual search improves RTs and accuracy. This phenomenon, known as priming of pop-out, has been demonstrated in both humans and macaque monkeys. We investigated the relationship between performance monitoring and priming of pop-out. Neuronal activity in the supplementary eye field (SEF) contributes to performance monitoring and to the generation of performance monitoring signals in the EEG. To determine whether priming depends on performance monitoring, we investigated spiking activity in SEF as well as the concurrent EEG of two monkeys performing a priming of pop-out task. We found that SEF spiking did not modulate with priming. Surprisingly, concurrent EEG did covary with priming. Together, these results suggest that performance monitoring contributes to priming of pop-out. However, this performance monitoring seems not mediated by SEF. This dissociation suggests that EEG indices of performance monitoring arise from multiple, functionally distinct neural generators.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2019) 31 (11): 1689–1698.
Published: 01 November 2019
FIGURES
| View All (4)
Abstract
View article
PDF
Visual working memory temporarily represents a continuous stream of task-relevant objects as we move through our environment performing tasks. Previous work has identified candidate neural mechanisms of visual working memory storage; however, we do not know which of these mechanisms enable the storage of objects as we sequentially encounter them in our environment. Here, we measured the contralateral delay activity (CDA) and lateralized alpha oscillations as human subjects were shown a series of objects that they needed to remember. The amplitude of CDA increased following the presentation of each to-be-remembered object, reaching asymptote at about three to four objects. In contrast, the concurrently measured lateralized alpha power remained constant with each additional object. Our results suggest that the CDA indexes the storage of objects in visual working memory, whereas lateralized alpha suppression indexes the focusing of attention on the to-be-remembered objects.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (8): 1629–1643.
Published: 01 August 2014
FIGURES
| View All (4)
Abstract
View article
PDF
Most theories of visual processing propose that object recognition is achieved in higher visual cortex. However, we show that category selectivity for musical notation can be observed in the first ERP component called the C1 (measured 40–60 msec after stimulus onset) with music-reading expertise. Moreover, the C1 note selectivity was observed only when the stimulus category was blocked but not when the stimulus category was randomized. Under blocking, the C1 activity for notes predicted individual music-reading ability, and behavioral judgments of musical stimuli reflected music-reading skill. Our results challenge current theories of object recognition, indicating that the primary visual cortex can be selective for musical notation within the initial feedforward sweep of activity with perceptual expertise and with a testing context that is consistent with the expertise training, such as blocking the stimulus category for music reading.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (1): 175–188.
Published: 01 January 2014
FIGURES
| View All (4)
Abstract
View article
PDF
Cognitive operations are thought to emerge from dynamic interactions between spatially distinct brain areas. Synchronization of oscillations has been proposed to regulate these interactions, but we do not know whether this large-scale synchronization can respond rapidly to changing cognitive demands. Here we show that, as task demands change during a trial, multiple distinct networks are dynamically formed and reformed via oscillatory synchronization. Distinct frequency-coupled networks were rapidly formed to process reward value, maintain information in visual working memory, and deploy visual attention. Strong single-trial correlations showed that networks formed even before the presentation of imperative stimuli could predict the strength of subsequent networks, as well as the speed and accuracy of behavioral responses seconds later. These frequency-coupled networks better predicted single-trial behavior than either local oscillations or ERPs. Our findings demonstrate the rapid reorganization of networks formed by dynamic activity in response to changing task demands within a trial.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (10): 2650–2664.
Published: 01 October 2011
FIGURES
| View All (6)
Abstract
View article
PDF
Biased competition theory proposes that representations in working memory drive visual attention to select similar inputs. However, behavioral tests of this hypothesis have led to mixed results. These inconsistent findings could be due to the inability of behavioral measures to reliably detect the early, automatic effects on attentional deployment that the memory representations exert. Alternatively, executive mechanisms may govern how working memory representations influence attention based on higher-level goals. In the present study, we tested these hypotheses using the N2pc component of participants' event-related potentials to directly measure the early deployments of covert attention. Participants searched for a target in an array that sometimes contained a memory-matching distractor. In Experiments 1 to 3, we manipulated the difficulty of the target discrimination and the proximity of distractors, but consistently observed that covert attention was deployed to the search targets and not the memory-matching distractors. In Experiment 4, we showed that when participants' goal involved attending to memory-matching items, these items elicited a large and early N2pc. Our findings demonstrate that working memory representations alone are not sufficient to guide early deployments of visual attention to matching inputs and that goal-dependent executive control mediates the interactions between working memory representations and visual attention.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (12): 1907–1922.
Published: 01 December 2005
Abstract
View article
PDF
Attention operates at an early stage in some experimental paradigms and at a late stage in others, which suggests that the locus of selection is flexible. The present study was designed to determine whether the locus of selection can vary flexibly within a single experimental paradigm as a function of relatively modest variations in stimulus and task parameters. In the first experiment, a new method for assessing the locus of selection was developed. Specifically, attention can influence perceptual encoding only if it is directed to the target before a perceptual representation of the target has been formed, whereas attention can influence postperceptual processes even if attention is cued after perception is complete. Event-related potentials were used to confirm the validity of this method. The subsequent experiments used cueing tasks in which subjects were required to perceive and remember a set of objects, and the difficulty of the perception and memory components of the task were varied. When the task overloaded perception but not working memory, attention influenced the formation of perceptual representations but not the storage of these representations in memory; when the task overloaded working memory but not perception, attention influenced the transfer of perceptual representations into memory but not the formation of the perceptual representations. Thus, attention operates to select relevant information at whatever stage or stages of processing are overloaded by a particular stimulus-task combination.