Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-7 of 7
Gina R. Kuperberg
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (1): 12–35.
Published: 01 January 2020
FIGURES
| View All (8)
Abstract
View article
PDF
It has been proposed that hierarchical prediction is a fundamental computational principle underlying neurocognitive processing. Here, we ask whether the brain engages distinct neurocognitive mechanisms in response to inputs that fulfill versus violate strong predictions at different levels of representation during language comprehension. Participants read three-sentence scenarios in which the third sentence constrained for a broad event structure, for example, { Agent caution animate–Patient }. High constraint contexts additionally constrained for a specific event/lexical item, for example, a two-sentence context about a beach, lifeguards, and sharks constrained for the event, { Lifeguards cautioned Swimmers }, and the specific lexical item swimmers . Low constraint contexts did not constrain for any specific event/lexical item. We measured ERPs on critical nouns that fulfilled and/or violated each of these constraints. We found clear, dissociable effects to fulfilled semantic predictions (a reduced N400), to event/lexical prediction violations (an increased late frontal positivity ), and to event structure/animacy prediction violations (an increased late posterior positivity/P600 ). We argue that the late frontal positivity reflects a large change in activity associated with successfully updating the comprehender's current situation model with new unpredicted information. We suggest that the late posterior positivity/P600 is triggered when the comprehender detects a conflict between the input and her model of the communicator and communicative environment. This leads to an initial failure to incorporate the unpredicted input into the situation model, which may be followed by second-pass attempts to make sense of the discourse through reanalysis, repair, or reinterpretation. Together, these findings provide strong evidence that confirmed and violated predictions at different levels of representation manifest as distinct spatiotemporal neural signatures.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (3): 484–502.
Published: 01 March 2013
FIGURES
| View All (7)
Abstract
View article
PDF
When a word is preceded by a supportive context such as a semantically associated word or a strongly constraining sentence frame, the N400 component of the ERP is reduced in amplitude. An ongoing debate is the degree to which this reduction reflects a passive spread of activation across long-term semantic memory representations as opposed to specific predictions about upcoming input. We addressed this question by embedding semantically associated prime–target pairs within an experimental context that encouraged prediction to a greater or lesser degree. The proportion of related items was used to manipulate the predictive validity of the prime for the target while holding semantic association constant. A semantic category probe detection task was used to encourage semantic processing and to preclude the need for a motor response on the trials of interest. A larger N400 reduction to associated targets was observed in the high than the low relatedness proportion condition, consistent with the hypothesis that predictions about upcoming stimuli make a substantial contribution to the N400 effect. We also observed an earlier priming effect (205–240 msec) in the high-proportion condition, which may reflect facilitation because of form-based prediction. In summary, the results suggest that predictability modulates N400 amplitude to a greater degree than the semantic content of the context.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (5): 1230–1246.
Published: 01 May 2011
FIGURES
Abstract
View article
PDF
This study examined neural activity associated with establishing causal relationships across sentences during on-line comprehension. ERPs were measured while participants read and judged the relatedness of three-sentence scenarios in which the final sentence was highly causally related, intermediately related, and causally unrelated to its context. Lexico-semantic co-occurrence was matched across the three conditions using a Latent Semantic Analysis. Critical words in causally unrelated scenarios evoked a larger N400 than words in both highly causally related and intermediately related scenarios, regardless of whether they appeared before or at the sentence-final position. At midline sites, the N400 to intermediately related sentence-final words was attenuated to the same degree as to highly causally related words, but otherwise the N400 to intermediately related words fell in between that evoked by highly causally related and intermediately related words. No modulation of the late positivity/P600 component was observed across conditions. These results indicate that both simple and complex causal inferences can influence the earliest stages of semantically processing an incoming word. Further, they suggest that causal coherence, at the situation level, can influence incremental word-by-word discourse comprehension, even when semantic relationships between individual words are matched.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (12): 2685–2701.
Published: 01 December 2010
FIGURES
| View All (5)
Abstract
View article
PDF
This study examined the electrophysiological correlates of complement coercion. ERPs were measured as participants read and made acceptability judgments about plausible coerced sentences, plausible noncoerced sentences, and highly implausible animacy-violated sentences (“The journalist began/wrote/astonished the article before his coffee break”). Relative to noncoerced complement nouns, the coerced nouns evoked an N400 effect. This effect was not modulated by the number of possible activities implied by the coerced nouns (e.g., began reading the article; began writing the article) and did not differ either in magnitude or scalp distribution from the N400 effect evoked by the animacy-violated complement nouns. We suggest that the N400 modulation to both coerced and animacy-violated complement nouns reflected different types of mismatches between the semantic restrictions of the verb and the semantic properties of the incoming complement noun. This is consistent with models holding that a verb's semantic argument structure is represented and stored at a distinct level from its syntactic argument structure. Unlike the coerced complement noun, the animacy-violated nouns also evoked a robust P600 effect, which may have been triggered by the judgments of the highly implausible (syntactically determined) meanings of the animacy-violated propositions. No additional ERP effects were seen in the coerced sentences until the sentence-final word that, relative to sentence-final words in the noncoerced sentences, evoked a sustained anteriorly distributed positivity. We suggest that this effect reflected delayed attempts to retrieve the specific event(s) implied by coerced complement nouns.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (11): 2245–2262.
Published: 01 November 2009
Abstract
View article
PDF
Although the neurocognitive mechanisms of nonaffective language comprehension have been studied extensively, relatively less is known about how the emotional meaning of language is processed. In this study, electrophysiological responses to affectively positive, negative, and neutral words, presented within nonconstraining, neutral contexts, were evaluated under conditions of explicit evaluation of emotional content (Experiment 1) and passive reading (Experiment 2). In both experiments, a widely distributed Late Positivity was found to be larger to negative than to positive words (a “negativity bias”). In addition, in Experiment 2, a small, posterior N400 effect to negative and positive (relative to neutral) words was detected, with no differences found between N400 magnitudes to negative and positive words. Taken together, these results suggest that comprehending the emotional meaning of words following a neutral context requires an initial semantic analysis that is relatively more engaged for emotional than for nonemotional words, whereas a later, more extended, attention-modulated process distinguishes the specific emotional valence (positive vs. negative) of words. Thus, emotional processing networks within the brain appear to exert a continuous influence, evident at several stages, on the construction of the emotional meaning of language.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (11): 2037–2057.
Published: 01 November 2008
Abstract
View article
PDF
How do comprehenders build up overall meaning representations of visual real-world events? This question was examined by recording event-related potentials (ERPs) while participants viewed short, silent movie clips depicting everyday events. In two experiments, it was demonstrated that presentation of the contextually inappropriate information in the movie endings evoked an anterior negativity. This effect was similar to the N400 component whose amplitude has been previously reported to inversely correlate with the strength of semantic relationship between the context and the eliciting stimulus in word and static picture paradigms. However, a second, somewhat later, ERP component—a posterior late positivity—was evoked specifically when target objects presented in the movie endings violated goal-related requirements of the action constrained by the scenario context (e.g., an electric iron that does not have a sharp-enough edge was used in place of a knife in a cutting bread scenario context). These findings suggest that comprehension of the visual real world might be mediated by two neurophysiologically distinct semantic integration mechanisms. The first mechanism, reflected by the anterior N400-like negativity, maps the incoming information onto the connections of various strengths between concepts in semantic memory. The second mechanism, reflected by the posterior late positivity, evaluates the incoming information against the discrete requirements of real-world actions. We suggest that there may be a tradeoff between these mechanisms in their utility for integrating across people, objects, and actions during event comprehension, in which the first mechanism is better suited for familiar situations, and the second mechanism is better suited for novel situations.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2003) 15 (2): 272–293.
Published: 15 February 2003
Abstract
View article
PDF
The aim of this study was to gain further insights into how the brain distinguishes between meaning and syntax during language comprehension. Participants read and made plausibility judgments on sentences that were plausible, morpho-syntactically anomalous, or pragmatically anomalous. In an event-related potential (ERP) experiment, morphosyntactic and pragmatic violations elicited significant P600 and N400 effects, respectively, replicating previous ERP studies that have established qualitative differences in processing conceptually and syntactic anomalies. Our main focus was a functional magnetic resonance imaging (fMRI) study in which the same subjects read the same sentences presented in the same pseudorandomized sequence while performing the same task as in the ERP experiment. Rapid-presentation event-related fMRI methods allowed us to estimate the hemodynamic response at successive temporal windows as the sentences unfolded word by word, without assumptions about the shape of the underlying response function. Relative to nonviolated sentences, the pragmatic anomalies were associated with an increased hemodynamic response in left temporal and inferior frontal regions and a decreased response in the right medial parietal cortex. Relative to nonviolated sentences, the morphosyntactic anomalies were associated with an increased response in bilateral medial and lateral parietal regions and a decreased response in left temporal and inferior frontal regions. Thus, overlapping neural networks were modulated in opposite directions to the two types of anomaly. These fMRI findings document both qualitative and quantitative differences in how the brain distinguishes between these two types of anomalies. This suggests that morphosyntactic and pragmatic information can be processed in different ways but by the same neural systems.