Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-7 of 7
Giuseppe di Pellegrino
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2019) 31 (5): 639–656.
Published: 01 May 2019
FIGURES
| View All (5)
Abstract
View article
PDF
Individuals learn by comparing the outcome of chosen and unchosen actions. A negative counterfactual value signal is generated when this comparison is unfavorable. This can happen in private as well as in social settings—where the foregone outcome results from the choice of another person. We hypothesized that, despite sharing similar features such as supporting learning, these two counterfactual signals might implicate distinct brain networks. We conducted a neuropsychological study on the role of private and social counterfactual value signals in risky decision-making. Patients with lesions in the ventromedial prefrontal cortex (vmPFC), lesion controls, and healthy controls repeatedly chose between lotteries. In private trials, participants could observe the outcomes of their choices and the outcomes of the unselected lotteries. In social trials, participants could also see the other player's choices and outcome. At the time of outcome, vmPFC patients were insensitive to private counterfactual value signals, whereas their responses to social comparison were similar to those of control participants. At the time of choice, intact vmPFC was necessary to integrate counterfactual signals in decisions, although amelioration was observed during the course of the task, possibly driven by social trials. We conclude that if the vmPFC is critical in processing private counterfactual signals and in integrating those signals in decision-making, then distinct brain areas might support the processing of social counterfactual signals.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (4): 718–727.
Published: 01 April 2017
FIGURES
Abstract
View article
PDF
The medial prefrontal cortex (mPFC) and ACC have been consistently implicated in learning predictions of future outcomes and signaling prediction errors (i.e., unexpected deviations from such predictions). A computational model of ACC/mPFC posits that these prediction errors should be modulated by outcomes occurring at unexpected times, even if the outcomes themselves are predicted. However, unexpectedness per se is not the only variable that modulates ACC/mPFC activity, as studies reported its sensitivity to the salience of outcomes. In this study, mediofrontal negativity, a component of the event-related brain potential generated in ACC/mPFC and coding for prediction errors, was measured in 48 participants performing a Pavlovian aversive conditioning task, during which aversive (thus salient) and neutral outcomes were unexpectedly shifted (i.e., anticipated or delayed) in time. Mediofrontal ERP signals of prediction error were observed for outcomes occurring at unexpected times but were specific for salient (shock-associated), as compared with neutral, outcomes. These findings have important implications for the theoretical accounts of ACC/mPFC and suggest a critical role of timing and salience information in prediction error signaling.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (10): 2070–2079.
Published: 01 October 2012
FIGURES
Abstract
View article
PDF
Recent brain imaging studies have implicated the rostral ACC (rACC) in the resolution of conflict between competing response tendencies in emotional task contexts, but not in neutral task contexts. This study tested the hypothesis that the rACC is necessary for such context-specific conflict adaptation. To this end, a group of patients with lesions of the rACC, a group of brain-damaged controls, and a group of normal controls classified the emotional expression (emotional task context) or the gender (neutral task context) of faces while ignoring congruent and incongruent words written across the faces. In all three groups, performance was worse with incongruent as compared with congruent stimuli in both task contexts. In the two control groups, this congruency effect was reduced following incongruent trials in both task contexts. By contrast, the rACC group displayed such conflict adaptation only in the neutral, but not in the emotional, task context. These results show that the rACC is necessary for conflict adaptation in emotional but not in neutral task contexts and suggest that the regulation of behavior is context specific.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (8): 1888–1899.
Published: 01 August 2010
FIGURES
| View All (4)
Abstract
View article
PDF
Converging evidence suggests that emotion processing mediated by ventromedial prefrontal cortex (vmPFC) is necessary to prevent personal moral violations. In moral dilemmas, for example, patients with lesions in vmPFC are more willing than normal controls to approve harmful actions that maximize good consequences (e.g., utilitarian moral judgments). Yet, none of the existing studies has measured subjects' emotional responses while they considered moral dilemmas. Therefore, a direct link between emotion processing and moral judgment is still lacking. Here, vmPFC patients and control participants considered moral dilemmas while skin conductance response (SCR) was measured as a somatic index of affective state. Replicating previous evidence, vmPFC patients approved more personal moral violations than did controls. Critically, we found that, unlike control participants, vmPFC patients failed to generate SCRs before endorsing personal moral violations. In addition, such anticipatory SCRs correlated negatively with the frequency of utilitarian judgments in normal participants. These findings provide direct support to the hypothesis that the vmPFC promotes moral behavior by mediating the anticipation of the emotional consequences of personal moral violations.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (1): 128–140.
Published: 01 January 2009
Abstract
View article
PDF
Lesion and imaging studies have implicated the ventromedial prefrontal cortex (vmPFC) in economic decisions and social interactions, yet its exact functions remain unclear. Here, we investigated the hypothesis that the vmPFC represents the subjective value or desirability of future outcomes during social decision-making. Both vmPFC-damaged patients and control participants acted as the responder in a single-round ultimatum game. To test outcome valuation, we contrasted concrete, immediately available gains with abstract, future ones. To test social valuation, we contrasted interactions with a human partner and those involving a computer. We found that, compared to controls, vmPFC patients substantially reduced their acceptance rate of unfair offers from a human partner, but only when financial gains were presented as abstract amounts to be received later. When the gains were visible and readily available, the vmPFC patients' acceptance of unfair offers was normal. Furthermore, unlike controls, vmPFC patients did not distinguish between unfair offers from a human agent and those from a computerized opponent. We conclude that the vmPFC encodes the expected value of abstract, future goals in a common neural currency that takes into account both reward and social signals in order to optimize economic decision-making.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (2): 275–286.
Published: 01 February 2007
Abstract
View article
PDF
The contribution of the medial prefrontal cortex, particularly the anterior cingulate cortex (ACC), to cognitive control remains controversial. Here, we examined whether the rostral ACC is necessary for reactive adjustments in cognitive control following the occurrence of response conflict [Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. Conflict monitoring and cognitive control. Psychological Review, 108 , 624–652, 2001]. To this end, we assessed 8 patients with focal lesions involving the rostral sector of the ACC (rACC patients), 6 patients with lesions outside the frontal cortex (non-FC patients), and 11 healthy subjects on a variant of the Simon task in which levels of conflict were manipulated on a trial-by-trial basis. More specifically, we compared Simon effects (i.e., the difference in performance between congruent and incongruent trials) on trials that were preceded by high-conflict (i.e., incongruent) trials with those on trials that were preceded by low-conflict (i.e., congruent) trials. Normal controls and non-FC patients showed a reduction of the Simon effect when the preceding trial was incongruent, suggestive of an increase in cognitive control in response to the occurrence of response conflict. In contrast, rACC patients attained comparable Simon effects following congruent and incongruent events, indicating a failure to modulate their performance depending on the conflict level generated by the preceding trial. Furthermore, damage to the rostral ACC impaired the posterror slowing, a further behavioral phenomenon indicating reactive adjustments in cognitive control. These results provide insights into the functional organization of the medial prefrontal cortex in humans and its role in the dynamic regulation of cognitive control.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1998) 10 (5): 581–589.
Published: 01 September 1998
Abstract
View article
PDF
Current interpretations of extinction suggest that the disorder is due to an unbalanced competition between ipsilesional and contralesional representations of space. The question addressed in this study is whether the competition between left and right representations of space in one sensory modality (i.e., touch) can be reduced or exacerbated by the activation of an intact spatial representation in a different modality that is functionally linked to the damaged representation (i.e., vision). This hypothesis was tested in 10 right-hemisphere lesioned patients who suffered from reliable tactile extinction. We found that a visual stimulus presented near the patient's ipsilesional hand (i.e., visual peripersonal space) inhibited the processing of a tactile stimulus delivered on the contralesional hand (cross-modal visuotactile extinction) to the same extent as did an ipsilesional tactile stimulation (unimodal tactile extinction). It was also found that a visual stimulus presented near the contralesional hand improved the detection of a tactile stimulus applied to the same hand. In striking contrast, less modulatory effects of vision on touch perception were observed when a visual stimulus was presented far from the space immediately around the patient's hand (i.e., extrapersonal space). This study clearly demonstrates the existence of a visual peripersonal space centered on the hand in humans and its modulatory effects on tactile perception. These findings are explained by referring to the activity of bimodal neurons in premotor and parietal cortex of macaque, which have tactile receptive fields on the hand and corresponding visual receptive fields in the space immediately adjacent to the tactile fields.