Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-6 of 6
Gorana Pobric
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (6): 1082–1095.
Published: 01 May 2021
FIGURES
| View All (5)
Abstract
View articletitled, The Left Angular Gyrus Is Causally Involved in Context-dependent Integration and Associative Encoding during Narrative Reading
View
PDF
for article titled, The Left Angular Gyrus Is Causally Involved in Context-dependent Integration and Associative Encoding during Narrative Reading
The role of the left angular gyrus (AG) in language processing remains unclear. In this study, we used TMS to test the hypothesis that the left AG causally supports the processes necessary for context-dependent integration and encoding of information during language processing. We applied on-line TMS over the left AG to disrupt the on-line context-dependent integration during a language reading task, specifically while human participants integrated information between two sequentially presented paragraphs of text (“context” and “target” paragraphs). We assessed the effect of TMS on the left AG by asking participants to retrieve integrated contextual information when given the target condition as cue in a successive memory task. Results from the memory task showed that TMS applied over the left AG during reading impaired the formation of integrated context-target representation. These results provide the first evidence of a causal link between the left AG function, on-line information integration, and associative encoding during language processing.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (3): 351–360.
Published: 01 March 2016
FIGURES
Abstract
View articletitled, Hemispheric Specialization within the Superior Anterior Temporal Cortex for Social and Nonsocial Concepts
View
PDF
for article titled, Hemispheric Specialization within the Superior Anterior Temporal Cortex for Social and Nonsocial Concepts
Studies of semantic dementia, imaging, and repetitive TMS have suggested that the bilateral anterior temporal lobes (ATLs) underpin a modality-invariant representational hub within the semantic system. Questions remain, however, regarding functional specialization across a variety of knowledge domains within the ATL region. We investigated direct evidence for the functional relevance of the superior ATL in processing social concepts. Using converging evidence from noninvasive brain stimulation and neuropsychology, we demonstrate graded differentiation of right and left superior anterior temporal areas in social cognition. Whereas the left superior ATL is necessary for processing both social and nonsocial abstract concepts, social conceptual processing predominates in the right superior ATL. This graded hemispheric specialization is mirrored in the patient results. Our data shed new light on the classic debate about hemispheric differences in semantic and social cognition. These results are considered in the context of models of semantic representation and the emerging data on connectivity for left and right ATL regions.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (7): 1388–1396.
Published: 01 July 2015
FIGURES
Abstract
View articletitled, The Timing of Anterior Temporal Lobe Involvement in Semantic Processing
View
PDF
for article titled, The Timing of Anterior Temporal Lobe Involvement in Semantic Processing
Despite indications that regions within the anterior temporal lobe (ATL) might make a crucial contribution to pan-modal semantic representation, to date there have been no investigations of when during semantic processing the ATL plays a critical role. To test the timing of the ATL involvement in semantic processing, we studied the effect of double-pulse TMS on behavioral responses in semantic and difficulty-matched control tasks. Chronometric TMS was delivered over the left ATL (10 mm from the tip of the temporal pole along the middle temporal gyrus). During each trial, two pulses of TMS (40 msec apart) were delivered either at baseline (before stimulus presentation) or at one of the experimental time points 100, 250, 400, and 800 msec poststimulus onset. A significant disruption to performance was identified from 400 msec on the semantic task but not on the control assessment. Our results not only reinforce the key role of the left ATL in semantic representation but also indicate that its contribution is especially important around 400 msec poststimulus onset. Together, these facts suggest that the ATL may be one of the neural sources of the N400 ERP component.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (2): 403–414.
Published: 01 February 2008
Abstract
View articletitled, Functional Representation of Living and Nonliving Domains across the Cerebral Hemispheres: A Combined Event-related Potential/Transcranial Magnetic Stimulation Study
View
PDF
for article titled, Functional Representation of Living and Nonliving Domains across the Cerebral Hemispheres: A Combined Event-related Potential/Transcranial Magnetic Stimulation Study
Transcranial magnetic stimulation (TMS) over the left hemisphere has been shown to disrupt semantic processing but, to date, there has been no direct demonstration of the electrophysiological correlates of this interference. To gain insight into the neural basis of semantic systems, and in particular, study the temporal and functional organization of object categorization processing, we combined repetitive TMS (rTMS) and ERPs. Healthy volunteers performed a picture–word matching task in which Snodgrass drawings of natural (e.g., animal) and artifactual (e.g., tool) categories were associated with a word. When short trains of high-frequency rTMS were applied over Wernicke's area (in the region of the CP5 electrode) immediately before the stimulus onset, we observed delayed response times to artifactual items, and thus, an increased dissociation between natural and artifactual domains. This behavioral effect had a direct ERP correlate. In the response period, the stimuli from the natural domain elicited a significant larger late positivity complex than those from the artifactual domain. These differences were significant over the centro-parietal region of the right hemisphere. These findings demonstrate that rTMS interferes with postperceptual categorization processing of natural and artifactual stimuli that involve separate subsystems in distinct cortical areas.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (1): 170–181.
Published: 01 January 2008
Abstract
View articletitled, The Role of the Right Cerebral Hemisphere in Processing Novel Metaphoric Expressions: A Transcranial Magnetic Stimulation Study
View
PDF
for article titled, The Role of the Right Cerebral Hemisphere in Processing Novel Metaphoric Expressions: A Transcranial Magnetic Stimulation Study
Previous research suggests that the right hemisphere (RH) may contribute uniquely to the processing of metaphoric language. However, causal relationships between local brain activity in the RH and metaphors comprehension were never established. In addition, most studies have focused on familiar metaphoric expressions which might be processed similarly to any conventional word combination. The present study was designed to overcome these two problems by employing repetitive transcranial magnetic stimulation (rTMS) to examine the role of the RH in processing novel metaphoric expressions taken from poetry. Right-handed participants were presented with four types of word pairs, literal, conventional metaphoric and novel metaphoric expressions, and unrelated word pairs, and were asked to perform a semantic judgment task. rTMS of the right posterior superior temporal sulcus disrupted processing of novel but not conventional metaphors, whereas rTMS over the left inferior frontal gyrus selectively impaired processing of literal word pairs and conventional but not novel metaphors (Experiment 1). In a further experiment, we showed that these effects were due to right-left asymmetries rather than posterior-anterior differences (Experiment 2). This is the first demonstration of TMS-induced impairment in processing novel metaphoric expressions, and as such, confirms the specialization of the RH in the activation of a broader range of related meanings than the left hemisphere, including novel, nonsalient meanings. The findings thus suggest that the RH may be critically involved in at least one important component of novel metaphor comprehension, the integration of the individual meanings of two seemingly unrelated concepts into a meaningful metaphoric expression.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (6): 1013–1020.
Published: 01 June 2007
Abstract
View articletitled, Magnetic Stimulation of the Right Visual Cortex Impairs Form-specific Priming
View
PDF
for article titled, Magnetic Stimulation of the Right Visual Cortex Impairs Form-specific Priming
Recent evidence suggests that priming of objects across different images (abstract priming) and priming of specific images of an object (form-specific priming) are mediated by dissociable neural processing subsystems that operate in parallel and are predominantly linked to left and right hemispheric processing, respectively [Marsolek, C. J. Dissociable neural subsystems underlie abstract and specific object recognition. Psychological Science, 10 , 111–118, 1999]. Previous brain imaging studies have provided important information about the neuroanatomical regions that are involved in form-specific and abstract priming; however, these techniques did not fully establish the functional significance of priming-related changes in cortical brain activity. Here, we used repetitive transcranial magnetic stimulation (rTMS) in order to establish the functional role of the right occipital cortex in form-specific priming [Kroll, N. E. A., Yonelinas, A. P., Kishiyama, M. M., Baynes, K., Knight, R. T., & Gazzaniga, M. S. The neural substrates of visual implicit memory: Do the two hemispheres play different roles? Journal of Cognitive Neuroscience, 15 , 833–842, 2003]. Compared to no TMS and sham TMS, rTMS of the right occipital cortex disrupted immediate form-specific priming in a semantic categorization task. Left occipital rTMS, on the other hand, had no converse effect on abstractive priming. Abstract priming may involve deeper semantic processing and may be unresponsive to magnetic stimulation of a single cortical locus. Our TMS results show that form-specific priming relies on a visual word-form system localized in the right occipital lobe, in line with the predictions from divided visual field behavioral studies [Marsolek, 1999].